1
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
2
|
Chen Q, Liu Y, Ding X, Li Q, Qiu F, Wang M, Shen Z, Zheng H, Fu G. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem 2019; 465:103-114. [PMID: 31858380 PMCID: PMC6955239 DOI: 10.1007/s11010-019-03671-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
MicroRNA-125b (miR-125b) reduces myocardial infarct area and restrains myocardial ischemia reperfusion injury (I/R). In this study, we aimed to investigate the effect of bone marrow mesenchymal stem cell (BMSC)-derived exosomes carrying miR-125b on I/R rats. The myocardial I/R model in rats was constructed by ligation of the left anterior descending coronary artery (LAD). Rats were randomly divided into I/R and Sham group. Lv-cel-miR-67 (control) or Lv-miR-125b was transfected into BMSCs. Exosomes were extracted from transfected BMSCs, and separately named BMSC-Exo-67, BMSC-Exo-125b, and BMSC-Exo. MTT assay and flow cytometry were used to detect the viability and apoptosis of I/R myocardium cells, respectively. The expression of cell apoptosis proteins and the levels of inflammatory factors were examined by Western blot and ELISA assay, respectively. The target relationship between miR-125b and SIRT7 was predicted by using StarBase3.0, and was confirmed by using dual-luciferase reporter gene assay. qRT-PCR, immunohistochemistry staining, and Western blot were used to evaluate the expression of SIRT7 in myocardium tissues in I/R rats. BMSC-derived exosomes were successfully isolated and identified by TEM and positive expression of CD9 and CD63. The expression of miR-125b was down-regulated in I/R myocardium tissues and cells. BMSC-Exo-125b significantly up-regulated miR-125b in I/R myocardium cells. The intervention of BMSC-Exo-125b significantly increased the cell viability, decreased the apoptotic ratio, down-regulated Bax and caspase-3, up-regulated Bcl-2, and decreased the levels of IL-1β, IL-6, and TNF-α in I/R myocardium cells. SIRT7 was a target of miR-125b, and BMSC-Exo-125b significantly down-regulated SIRT7 in myocardium cells. In addition, the injection of BMSC-Exo-125b alleviated the pathological damages and down-regulated SIRT7 in myocardium tissues of I/R rats. BMSC-derived exosomes carrying miR-125b protected against myocardial I/R by targeting SIRT7.
Collapse
Affiliation(s)
- Qi Chen
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xueyan Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Qinfeng Li
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Fuyu Qiu
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Meihui Wang
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Zhida Shen
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Hao Zheng
- Department of Cardiology, Zhejiang Provincial People's Hospital, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| | - Guosheng Fu
- Department of Cardiology, School of Medicine, Sir Run Run Shaw Hospital, Biomedical Research Center, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
3
|
Stamenkovic A, Ganguly R, Aliani M, Ravandi A, Pierce GN. Overcoming the Bitter Taste of Oils Enriched in Fatty Acids to Obtain Their Effects on the Heart in Health and Disease. Nutrients 2019; 11:E1179. [PMID: 31137794 PMCID: PMC6566568 DOI: 10.3390/nu11051179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one's health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Riya Ganguly
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Michel Aliani
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| |
Collapse
|
4
|
Zhou W, Zhou W, Zeng Q, Xiong J. MicroRNA-138 inhibits hypoxia-induced proliferation of endothelial progenitor cells via inhibition of HIF-1α-mediated MAPK and AKT signaling. Exp Ther Med 2017; 13:1017-1024. [PMID: 28450935 DOI: 10.3892/etm.2017.4091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/10/2016] [Indexed: 12/28/2022] Open
Abstract
Endothelial progenitor cells (EPCs) participate in angiogenesis by differentiating into endothelial cells (ECs) and may be developed to treat ischemia/reperfusion injury. MicroRNAs (miRs) are a type of non-coding RNA that are 18-25 nucleotides in length and serve a role in angiogenesis. It has been demonstrated that miR-138 regulates hypoxia-induced EC dysfunction. However, to the best of our knowledge, the exact role of miR-138 in the regulation of hypoxia-induced EPCs has not previously been reported. In the present study, data collected from an MTT assay indicated that hypoxia treatment enhanced EPC proliferation, which was accompanied by an upregulation of hypoxia-inducible factor 1α (HIF-1α) expression. miR-138 overexpression inhibited hypoxia-induced EPC proliferation and induced cell cycle arrest at the G1 stage. A mechanistic investigation revealed that miR-138 negatively regulated HIF-1α protein levels but did not affect HIF-1α mRNA levels in EPCs. Moreover, results from a dual luciferase reporter assay demonstrated that HIF-1α was a direct target of miR-138 in EPCs. Furthermore, upregulation of miR-138 suppressed the hypoxia-induced upregulation of HIF-1α. Downstream factors of HIF-1α were also investigated and it was observed that the upregulation of miR-138 inhibited the hypoxia-induced upregulation of vascular endothelial growth factor, as well as the activity of mitogen-activated protein kinase and AKT signaling in EPCs. In summary, the present study suggested that miR-138 inhibits hypoxia-induced EPC proliferation, possibly by inhibiting HIF-1α-mediated signaling.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qingzhong Zeng
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jixin Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Martino A, Pezzi L, Magnano R, Salustri E, Penco M, Calo’ L. Omega 3 and atrial fibrillation: Where are we? World J Cardiol 2016; 8:114-119. [PMID: 26981208 PMCID: PMC4766263 DOI: 10.4330/wjc.v8.i2.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Anti-arrhythmic properties of n-3 polyunsaturated fatty acids, at least in part mediated by anti-oxidant, anti-inflammatory and anti-fibrotic power, have been widely proved. Effect of fish oil on atrial fibrillation, both in primary and in secondary prevention and after cardiac surgery, are controversial, mostly due to lack of homogeneity between studies but also due to individual variability in response to fatty acids administration. Inclusion of measurement of incorporation of fish oil into cell membranes, appears to be essential in future studies, to assess their antiarrhythmic effect.
Collapse
|
6
|
Zhang J, Liu Q, Hu X, Fang Z, Huang F, Tang L, Zhou S. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling. Mol Med Rep 2015; 12:3829-3834. [PMID: 26018184 DOI: 10.3892/mmr.2015.3866] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial progenitor cells (EPCs) can adhere to the endothelium at sites of hypoxia/ischemia and participate in the formation of novel vessels through differentiating into endothelial cells (ECs). Apelin is an endogenous ligand for the G protein‑coupled receptor APJ, and apelin/APJ signaling has a role in cardiovascular function. The present study aimed to investigate the role of apelin/APJ signaling in the regulation of EPC proliferation under hypoxia. The results showed that hypoxia was able to induce EPC proliferation, accompanied with an upregulation of hypoxia‑inducible factor (HIF)‑1α as well as apelin/APJ signaling. Further investigation indicated that siRNA‑mediated knockdown of apelin or APJ expression attenuated the hypoxia‑induced proliferation of EPCs, suggesting that apelin/APJ signaling has an important role in hypoxia‑induced EPC proliferation. Moreover, the phosphoinositide‑3 kinase (PI3K)/Akt signaling pathway was found to be involved in the apelin/APJ‑mediated EPC proliferation under hypoxia. Based on these findings, the present study suggested that hypoxia‑induced upregulation of HIF‑1α promotes the expression of apelin and APJ, which further activate the downstream PI3K/Akt signaling pathway, a key promoter of EPC proliferation. In conclusion, the present study highlighted the role of apelin/APJ in the regulation of EPC proliferation, and apelin/APJ may therefore serve as a potential target for the prevention of hypoxic ischemic injury.
Collapse
Affiliation(s)
- Jingchang Zhang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhenfei Fang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liang Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
Ganguly R, Pierce GN. The toxicity of dietary trans fats. Food Chem Toxicol 2015; 78:170-6. [DOI: 10.1016/j.fct.2015.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 02/02/2023]
|
8
|
YANG QIONG, YANG KAN, LI ANYING. microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep 2014; 9:2213-20. [DOI: 10.3892/mmr.2014.2068] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
|