1
|
Abstract
PURPOSE OF REVIEW Home monitoring in ophthalmology is appropriate for disease stages requiring frequent monitoring or rapid intervention, for example, neovascular age-related macular degeneration (AMD) and glaucoma, where the balance between frequent hospital attendance versus risk of late detection is a constant challenge. Artificial intelligence approaches are well suited to address some challenges of home monitoring. RECENT FINDINGS Ophthalmic data collected at home have included functional (e.g. perimetry), biometric (e.g. intraocular pressure), and imaging [e.g. optical coherence tomography (OCT)] data. Potential advantages include early detection/intervention, convenience, cost, and visual outcomes. Artificial intelligence can assist with home monitoring workflows by handling large data volumes from frequent testing, compensating for test quality, and extracting useful metrics from complex data. Important use cases include machine learning applied to hyperacuity self-testing for detecting neovascular AMD and deep learning applied to OCT data for quantifying retinal fluid. SUMMARY Home monitoring of health conditions is useful for chronic diseases requiring rapid intervention or frequent data sampling to decrease risk of irreversible vision loss. Artificial intelligence may facilitate accurate, frequent, large-scale home monitoring, if algorithms are integrated safely into workflows. Clinical trials and economic evaluations are important to demonstrate the value of artificial intelligence-based home monitoring, towards improved visual outcomes.
Collapse
Affiliation(s)
- Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anat Loewenstein
- Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life (Basel) 2023; 13:life13020568. [PMID: 36836923 PMCID: PMC9960288 DOI: 10.3390/life13020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
| | - Bhupendra Gopalbhai Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
- Correspondence: or ; Tel.: +91-9429225025
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
3
|
Cao X, Sanchez JC, Patel TP, Yang Z, Guo C, Malik D, Sopeyin A, Montaner S, Sodhi A. Aflibercept more effectively weans patients with neovascular age-related macular degeneration off therapy compared with bevacizumab. J Clin Invest 2023; 133:159125. [PMID: 36413411 PMCID: PMC9843049 DOI: 10.1172/jci159125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUNDStudies assessing the efficacy of therapies for neovascular age-related macular degeneration (nvAMD) have demonstrated that aflibercept may have a longer treatment interval than its less-expensive alternative, bevacizumab. However, whether this benefit justifies the additional cost of aflibercept remains under debate. We have recently reported that a treat-and-extend-pause/monitor approach can be used to successfully wean 31% of patients with nvAMD off anti-VEGF therapy. Here, we examined whether the choice of therapy influences the outcomes of this approach.METHODSIn this retrospective analysis, 122 eyes of 106 patients with nvAMD underwent 3 consecutive monthly injections with either aflibercept (n = 70) or bevacizumab (n = 52), followed by a treat-and-extend protocol, in which the decision to extend the interval between treatments was based on visual acuity, clinical exam, and the presence or absence of fluid on optical coherence tomography. Eyes that remained stable 12 weeks from their prior treatment were given a 6-week trial of holding further treatment, followed by quarterly monitoring. Treatment was resumed for worsening vision, clinical exam, or optical coherence tomography findings.RESULTSAt the end of 1 year, eyes receiving bevacizumab had similar vision but required more injections (8.7 ± 0.3 treatments vs. 7.2 ± 0.3 treatments) compared with eyes receiving aflibercept. However, eyes treated with aflibercept were almost 3 times more likely to be weaned off treatment (43% vs. 15%) compared with eyes treated with bevacizumab at the end of 1 year.CONCLUSIONThese observations expose an advantage of aflibercept over bevacizumab and have important clinical implications for the selection of therapy for patients with nvAMD.FUNDINGThis work was supported by the National Eye Institute, NIH grants R01EY029750 and R01EY025705, Research to Prevent Blindness, the Alcon Young Investigator Award from the Alcon Research Institute, and the Branna and Irving Sisenwein Professorship in Ophthalmology.
Collapse
Affiliation(s)
- Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tapan P. Patel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danyal Malik
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anuoluwapo Sopeyin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Department of Pathology, School of Medicine, University of Maryland School of Dentistry, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Cao X, Sanchez JC, Dinabandhu A, Guo C, Patel TP, Yang Z, Hu MW, Chen L, Wang Y, Malik D, Jee K, Daoud YJ, Handa JT, Zhang H, Qian J, Montaner S, Sodhi A. Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy. J Clin Invest 2022; 132:e144469. [PMID: 34874918 PMCID: PMC8759792 DOI: 10.1172/jci144469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
BackgroundTo reduce the treatment burden for patients with neovascular age-related macular degeneration (nvAMD), emerging therapies targeting vascular endothelial growth factor (VEGF) are being designed to extend the interval between treatments, thereby minimizing the number of intraocular injections. However, which patients will benefit from longer-acting agents is not clear.MethodsEyes with nvAMD (n = 122) underwent 3 consecutive monthly injections with currently available anti-VEGF therapies, followed by a treat-and-extend protocol. Patients who remained quiescent 12 weeks from their prior treatment entered a treatment pause and were switched to pro re nata (PRN) treatment (based on vision, clinical exam, and/or imaging studies). Proteomic analysis was performed on aqueous fluid to identify proteins that correlate with patients' response to treatment.ResultsAt the end of 1 year, 38 of 122 eyes (31%) entered a treatment pause (≥30 weeks). Conversely, 21 of 122 eyes (17%) failed extension and required monthly treatment at the end of year 1. Proteomic analysis of aqueous fluid identified proteins that correlated with patients' response to treatment, including proteins previously implicated in AMD pathogenesis. Interestingly, apolipoprotein-B100 (ApoB100), a principal component of drusen implicated in the progression of nonneovascular AMD, was increased in treated patients who required less frequent injections. ApoB100 expression was higher in AMD eyes compared with controls but was lower in eyes that develop choroidal neovascularization (CNV), consistent with a protective role. Accordingly, mice overexpressing ApoB100 were partially protected from laser-induced CNV.FundingThis work was supported by the National Eye Institute, National Institutes of Health grants R01EY029750, R01EY025705, and R01 EY27961; the Research to Prevent Blindness, Inc.; the Alcon Research Institute; and Johns Hopkins University through the Robert Bond Welch and Branna and Irving Sisenwein professorships in ophthalmology.ConclusionAqueous biomarkers could help identify patients with nvAMD who may not require or benefit from long-term treatment with anti-VEGF therapy.
Collapse
Affiliation(s)
- Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry and Department of Pathology, School of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tapan P. Patel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Danyal Malik
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yassine J. Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry and Department of Pathology, School of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Loewenstein A, Keenan TDL. Perspectives on remote patient monitoring with self-operated OCT for management of neovascular age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1990757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anat Loewenstein
- Ophthalmology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tiarnan D. L. Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Prospective, Longitudinal Pilot Study. OPHTHALMOLOGY SCIENCE 2021; 1:100034. [PMID: 36249303 PMCID: PMC9562348 DOI: 10.1016/j.xops.2021.100034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
|
7
|
Grzybowski A, Schwartz SG, Kanclerz P. 2019 Update in Retinal Pharmacotherapies. Curr Pharm Des 2018; 24:4842. [PMID: 30963967 DOI: 10.2174/138161282441190320140728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology University of Warmia and Mazury Olsztyn, Poland Institute for Research in Ophthalmology Foundation for Ophthalmology Development Poznan, Poland
| | - Stephen G Schwartz
- Department of Ophthalmology Bascom Palmer Eye Institute University of Miami Miller School of Medicine Miami, FL, United States
| | | |
Collapse
|