1
|
Wang X, Gao DM, Li J, Wang X, Xu J, Zhang H, Gao Y, Wu H, Ma Z. Synthesis of Indolyl Isothiocyanate and Its Inhibitory Activity against Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21869-21876. [PMID: 39288071 DOI: 10.1021/acs.jafc.4c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Based on previous research, this study synthesized 24 compounds by splicing the substructures of the indolyl group and the isothiocyanate group. Alternaria alternata, Phytophthora capsici, Botrytis cinerea, and Valsa mali were used to test the activity of the target compounds. At 100 μg/mL, compounds 8, 13, 14, and 17 exhibited excellent inhibitory effects of more than 80% on P. capsici, B. cinerea, and V. mail. The EC50 values of compounds 13 and 14 were 0.64 and 2.08 μg/mL, respectively. Potted antifungal activity demonstrated that compounds 13 and 14 had a protective effect of around 80% against B. cinerea at 200 μg/mL. Further physiological and biochemical studies on B. cinerea revealed that compound 13 thickened cell walls and caused mitochondrial vacuolization. Moreover, theoretical calculations indicated that the charge distribution of indolyl isothiocyanate compounds played a crucial role in the observed fungicidal activity. In summary, this study provided fundamental reference data for the derivative synthesis of these indolyl isothiocyanate compounds.
Collapse
Affiliation(s)
- Xian Wang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Dong-Mei Gao
- Pharmaceuticals and Chemical Engineering, Yangling Vocational & Technical College Yangling, Shaanxi Province 712100, China
| | - Jia Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Xiaoxiao Wang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Jialu Xu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hao Zhang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Yanqing Gao
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
2
|
Hanuš L, Naor T, Gloriozova T, Dembitsky VM. Natural isothiocyanates of the genus Capparis as potential agonists of apoptosis and antitumor drugs. World J Pharmacol 2023; 12:35-52. [DOI: 10.5497/wjp.v12.i4.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Using gas chromatography-mass spectrometry (GC/MS) analysis, we examined the composition of volatile components present in the yellow and green fruits, seeds, and jam of the scrambling shrub Capparis cartilaginea (C. cartilaginea). These plant samples were collected from Kibbutz Yotvata in Israel. In all the tested samples, isothiocyanates were identified. Utilizing the PASS program, we ascertained the biological activity of these isothiocyanates present in the Capparis genus. The study results highlighted that all isothiocyanates could potentially act as apoptosis agonists, making them strong candidates for antitumor drugs. This information holds significant value for the fields of medicinal chemistry, pharmacology, and practical medicine.
AIM To investigate the volatile components present in the yellow and green fruits, seeds, and jam of the C. cartilaginea shrub using GC/MS analysis, to detect isothiocyanates in all the analyzed plant samples, and to assess the biological activity of these isothiocyanates utilizing the PASS program.
METHODS We utilized two primary methods to analyze the volatile compounds present in the yellow and green fruits, seeds, and jams of the C. cartilaginea, native to Israel. We identified biologically active isothiocyanates in these samples. Their anticipated biological activities were determined using the PASS program, with the most dominant activities being apoptosis agonist, anticarcinogenic, and antineoplastic specifically for genitourinary cancer.
RESULTS Fruits, seeds, and jams containing isothiocyanates, which exhibit antineoplastic and anticarcinogenic activities, could be suggested for cancer prevention and management. Specific isothiocyanates, with therapeutic potential in this realm, could be recommended as potent anticancer agents in practical medicine following clinical trials.
CONCLUSION The discovery that isothiocyanates exhibit potent antineoplastic and anticarcinogenic activities was unexpected. Additionally, certain isothiocyanates demonstrated antifungal, antiviral (specifically against arbovirus), and antiparasitic properties.
Collapse
Affiliation(s)
- Lumír Hanuš
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Ein Kerem Campus, Jerusalem 91120, Israel
| | - Tuvia Naor
- Food Chemistry, Kibbutz, Yotvata 8882000, Israel
| | - Tatyana Gloriozova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Valery M Dembitsky
- Centre for Applied Research and Innovation, Lethbridge College, Lethbridge AB T1K 1L6, Canada
| |
Collapse
|
3
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Kim SH, Ochar K, Hwang A, Lee YJ, Kang HJ. Variability of Glucosinolates in Pak Choy ( Brassica rapa subsp. chinensis) Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 13:9. [PMID: 38202314 PMCID: PMC10780573 DOI: 10.3390/plants13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Glucosinolates are sulfur-containing phytochemicals generally abundant in cruciferous vegetables such as pak choy. Glucosinolates participate in a range of biological activities essential for promoting a healthy human body. In this study, we aimed to elucidate glucosinolate variability present in pak choy germplasm that are under conservation at the Rural Development Administration Genebank, Jeonju, Republic of Korea. The Acquity Ultra-Performance Liquid Chromatography (UHPLC) analytical system was used in profiling the glucosinolate content in leaf samples of various accessions. We identified a total of 17 glucosinolates in the germplasm. Based on principal compoment analysis performed, three separate groups of the accessions were obtained. Group 1 contained the cultivar cheongsacholong which recorded high content of glucobrassicin (an indole), glucoerucin (aliphatic), gluconasturtiin (aromatic) and glucoberteroin (aliphatic). Group 2 consisted of six accessions, BRA77/72, Lu ling gaogengbai, 9041, Wuyueman, RP-75 and DH-10, predominatly high in aliphatic compounds including glucoiberin, glucocheirolin, and sinigrin. Group 3 comprised the majority of the accessions which were characterized by high content of glucoraphanin, epiprogoitrin, progoitrin, and glucotropaeolin. These results revealed the presence of variability among the pak choy germplasm based on their glucosinolate content, providing an excellent opprtunity for future breeding for improved glucosinolate content in the crop.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Aejin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Hae Ju Kang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
5
|
Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022; 13:924817. [PMID: 35754474 PMCID: PMC9218606 DOI: 10.3389/fphar.2022.924817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator kelch-like ECH-associated protein 1 (KEAP1) regulate various genes involved in redox homeostasis, which protects cells from stress conditions such as reactive oxygen species and therefore exerts beneficial effects on suppression of carcinogenesis. In addition to their pivotal role in cellular physiology, accumulating innovative studies indicated that NRF2/KEAP1-governed pathways may conversely be oncogenic and cause therapy resistance, which was profoundly modulated by epigenetic mechanism. Therefore, targeting epigenetic regulation in NRF2/KEAP1 signaling is a potential strategy for cancer treatment. In this paper, the current knowledge on the role of NRF2/KEAP1 signaling in cancer oxidative stress is presented, with a focus on how epigenetic modifications might influence cancer initiation and progression. Furthermore, the prospect that epigenetic changes may be used as therapeutic targets for tumor treatment is also investigated.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sining Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlin Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
In vitro antiproliferative and cytotoxic activities of novel triphenyltin isoselenocyanate in human breast carcinoma cell lines MCF 7 and MDA-MB-231. Med Oncol 2022; 39:99. [DOI: 10.1007/s12032-022-01692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
7
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
8
|
Kołodziejski D, Koss-Mikołajczyk I, Glatt H, Bartoszek A. The comparison of cytotoxic and genotoxic activities of glucosinolates, isothiocyanates, and indoles. Sci Rep 2022; 12:4875. [PMID: 35318378 PMCID: PMC8940953 DOI: 10.1038/s41598-022-08893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Chemopreventive properties of Brassica vegetables are attributed mainly to their characteristic compounds—glucosinolates (GLs) and their main hydrolysis products—isothiocyanates (ITCs) and indoles. In this study, we compared antiproliferative activity (MTT test in HT29 cells) and genotoxic effects (comet assay in HT29 cells and restriction analysis in a cell-free system) of three GLs (sinigrin (SIN), glucotropaeolin (GTL), and glucobrassicin (GLB)) with that of their major degradation products. Intact GLs did not exhibit cytotoxic activity, possibly due to their limited bioavailability. However, in the presence of myrosinase (MYR), GLs gained the ability to inhibit HT29 cells’ growth. The addition of MYR caused the hydrolysis of GLs to the corresponding ITCs or indoles, i.e. compounds that show stronger biological activity than parent GLs. Pure ITC/indole solutions showed the strongest antiproliferative activity. Based on the results of restriction analysis, it was found that GLs to a greater extent than ITCs caused DNA modification in a cell-free system. In the case of GLs, metabolic activation by the S9 fraction increased this effect, and at the same time changed the preferential binding site from the area of base pairs AT to GC base pairs. Of all compounds tested, only benzyl ITC caused DNA damage detectable in the comet assay, but it required relatively high concentrations.
Collapse
Affiliation(s)
- Dominik Kołodziejski
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
9
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|
10
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Affiliation(s)
- Claus Jacob
- Department of Pharmacy Building B 2.1., Room 1.13 Saarland State University Campus D-66123 Saarbruecken, Germany
| |
Collapse
|