1
|
Hovhannisyan Z, Timotina M, Manoyan J, Gabrielyan L, Petrosyan M, Kusznierewicz B, Bartoszek A, Jacob C, Ginovyan M, Trchounian K, Sahakyan N, Nasim MJ. Ribes nigrum L. Extract-Mediated Green Synthesis and Antibacterial Action Mechanisms of Silver Nanoparticles. Antibiotics (Basel) 2022; 11:antibiotics11101415. [PMID: 36290073 PMCID: PMC9598068 DOI: 10.3390/antibiotics11101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Silver nanoparticles (Ag NPs) represent one of the most widely employed metal-based engineered nanomaterials with a broad range of applications in different areas of science. Plant extracts (PEs) serve as green reducing and coating agents and can be exploited for the generation of Ag NPs. In this study, the phytochemical composition of ethanolic extract of black currant (Ribes nigrum) leaves was determined. The main components of extract include quercetin rutinoside, quercetin hexoside, quercetin glucuronide, quercetin malonylglucoside and quercitrin. The extract was subsequently employed for the green synthesis of Ag NPs. Consequently, R. nigrum leaf extract and Ag NPs were evaluated for potential antibacterial activities against Gram-negative bacteria (Escherichia coli ATCC 25922 and kanamycin-resistant E. coli pARG-25 strains). Intriguingly, the plant extract did not show any antibacterial effect, whilst Ag NPs demonstrated significant activity against tested bacteria. Biogenic Ag NPs affect the ATPase activity and energy-dependent H+-fluxes in both strains of E. coli, even in the presence of N,N’-dicyclohexylcarbodiimide (DCCD). Thus, the antibacterial activity of the investigated Ag NPs can be explained by their impact on the membrane-associated properties of bacteria.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Marina Timotina
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Jemma Manoyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Margarit Petrosyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Mikayel Ginovyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Naira Sahakyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 0025 Yerevan, Armenia
- Correspondence: (N.S.); (M.J.N.); Tel.: +374-60710547 (N.S.); +496-8130257335 (M.J.N.)
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
- Correspondence: (N.S.); (M.J.N.); Tel.: +374-60710547 (N.S.); +496-8130257335 (M.J.N.)
| |
Collapse
|
2
|
Bossard E, Tsafantakis N, Aligiannis N, Fokialakis N. A Development Strategy of Tailor-made Natural Deep Eutectic Solvents for the Enhanced Extraction of Hydroxynaphthoquinones from Alkanna tinctoria Roots. PLANTA MEDICA 2022; 88:826-837. [PMID: 35021247 DOI: 10.1055/a-1738-5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5 : 1 (molHBA : molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.
Collapse
Affiliation(s)
- Elodie Bossard
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Motolinía-Alcántara EA, Castillo-Araiza CO, Rodríguez-Monroy M, Román-Guerrero A, Cruz-Sosa F. Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122762. [PMID: 34961231 PMCID: PMC8707313 DOI: 10.3390/plants10122762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The large-scale production of plant-derived secondary metabolites (PDSM) in bioreactors to meet the increasing demand for bioactive compounds for the treatment and prevention of degenerative diseases is nowadays considered an engineering challenge due to the large number of operational factors that need to be considered during their design and scale-up. The plant cell suspension culture (CSC) has presented numerous benefits over other technologies, such as the conventional whole-plant extraction, not only for avoiding the overexploitation of plant species, but also for achieving better yields and having excellent scaling-up attributes. The selection of the bioreactor configuration depends on intrinsic cell culture properties and engineering considerations related to the effect of operating conditions on thermodynamics, kinetics, and transport phenomena, which together are essential for accomplishing the large-scale production of PDSM. To this end, this review, firstly, provides a comprehensive appraisement of PDSM, essentially those with demonstrated importance and utilization in pharmaceutical industries. Then, special attention is given to PDSM obtained out of CSC. Finally, engineering aspects related to the bioreactor configuration for CSC stating the effect of the operating conditions on kinetics and transport phenomena and, hence, on the cell viability and production of PDSM are presented accordingly. The engineering analysis of the reviewed bioreactor configurations for CSC will pave the way for future research focused on their scaling up, to produce high value-added PDSM.
Collapse
Affiliation(s)
| | - Carlos Omar Castillo-Araiza
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| |
Collapse
|
4
|
Peng F, Zhang H, He X, Song Z. Effects of Ursolic Acid on Intestinal Health and Gut Bacteria Antibiotic Resistance in Mice. Front Physiol 2021; 12:650190. [PMID: 34122127 PMCID: PMC8195277 DOI: 10.3389/fphys.2021.650190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Ursolic acid (UA), a natural pentacyclic triterpenoid, has been widely reported to exert anti-oxidant and anti-inflammatory properties. However, the effects of UA on the intestinal homeostasis and gut microbiota were rarely explored. The aim of the present study was to investigate the effects of UA on intestinal health and gut microflora antibiotic-resistance in antibiotic-exposed mice. Kunming mice (n = 80) were randomly allocated into three groups and fed with one of the following diets, respectively: Cont group (n = 20), the basal diet; UA group (n = 20), the basal diet supplemented with 150 mg/kg UA; Tet group (n = 40), the basal diet supplemented with 659 mg/kg chlortetracycline. After 14 days, 10 mice in each group were euthanatized and the remaining 30 mice in the Tet group were randomly allocated into three sub-groups (n = 10 per group) as follows: the Tet group which were kept feeding a Tet diet for 14 days; the Natural Restoration (NatR) group which received a basal diet for 14 days; and the UA therapy (UaT) group which fed a basal diet supplemented with 150 mg/kg UA for 14 days. Throughout the experiment, the weight and the food intake of each mouse were recorded once weekly. Serum LPS and diamine oxidase (DAO), jejunal morphology, jejunal tight junction proteins and nutrient transporters, colonic inflammatory cytokines, gut microbiota and its antibiotic resistance gene (ARG) were examined at euthanasia. The results showed that UA treatment significantly increased average daily food intake (ADFI) of mice. Notably, UA increased the jejunal villi height, decreased the jejunal crypt depth and promoted the expression of jejunum nutrient transporters. UaT group had higher villi height, lower crypt depth and higher nutrient transporter mRNA expression in jejunum than NatR group. Besides, UA decreased serum DAO content, upregulated mRNA expression of ZO-1, claudin-1 and occludin and downregulated TNF-α and IL-6. The mRNA abundances of ZO-1, claudin-1 and occludin and TNF-α and IL-6 in UaT group were, respectively upregulated and downregulated than NatR group. Furthermore, an analysis of 16S rDNA sequences demonstrated that UA increased the abundance of beneficial bacteria in the gut. And the results of ARG test showed that UA downregulated the expression of antibiotic-induced resistance genes. The UaT group inhibited the increase of harmful bacteria abundance and suppressed the mRNA abundances of ARG compared to the NatR group. In conclusion, considering the positive effects of UA on the growth performance and intestinal mucosal barrier, we anticipate that these findings could be a stepping stone for developing UA as a novel substitute of antibiotics.
Collapse
Affiliation(s)
- Fang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| |
Collapse
|
5
|
Poghosyan E, Sahakyan N, Petrosyan M, Batlutskaya I, Trchounian K. Isolated culture of A. reptance L., its’ morphological and growth features. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A growing demand for the ecologically pure products brings us for searching novel biotechnological approaches for plant cultivation. One of these approaches is the in vitro cultivation and further acclimatization of valuable plant species. The object of our investigation was Ajugareptance L. ornamental plant which possesses high metabolic activity. In vitro cultivation was carried out applying Murashige-Skoog nutrient medium and its modifications. Acclimatization of in vitro plants was implemented according Hazarika. In the presence of twice higher concentration of cytokinins over auxins and 0.2 mg/ml gibberellins callus culture was formed from the leaf explants. Callus tissue was formed in the presence of 0.2 mg/ml kinetin and 2 mg/ml indole-3-acetic acid which has denser structure than the first one. The shoot formation was observed on callus cultures growing on the same medium approximately after 5th passage. Callus culture growth was supported also by the adding of 2 mg/ml 2,4-dichlorophenoxyacetic acid. For the micropropagation, the already formed shoots were transferred to the nutrient medium which contains only 0.1 mg/ml 1-Naphthaleneacetic acid as a phytohormone. A. reptans culture has high regenerative ability and the micro-propagation index was 104 – 105. In vitro regenerated plants were successfully acclimatized to the soil conditions during two-week period.
Collapse
|
6
|
Farhan A, Alsuwayt B, Alanazi F, Yaseen A, Ashour MA. Evaluation and HPLC characterisation of a new herbal ointment for the treatment of full-thickness burns in rats. J Taibah Univ Med Sci 2020; 16:152-161. [PMID: 33897320 PMCID: PMC8046957 DOI: 10.1016/j.jtumed.2020.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022] Open
Abstract
Objective Burn injuries are among the most common accidental health problems worldwide, frequently leading to health and socio-economic challenges. Despite this, no standard protocol for managing burn injuries can overcome the adverse effects of currently used drugs. The present study sets out to develop and evaluate the efficacy of new herbal ointments in providing synergistic anti-inflammatory, antimicrobial, antioxidant, and cell-proliferating activities. It also investigates the high-performance liquid chromatography (HPLC) characterisation of these new herbal ointments. Method Three different concentrations of the new herbal ointment, which incorporates extracts of Matricaria aurea flower heads, arial parts of Calendula tripterocarpa, Rosmarinus officinalis leaves, Alkanna tinctoria roots, and myrrh were developed and evaluated. Ointments designed to promote burn-wound healing were prepared and compared with β-sitosterol ointment and silver sulfadiazine cream, as a commercial standards. Results According to statistical and histopathological analyses and visual inspections, the new herbal formulas showed faster wound healing, more tolerability, and less toxicity than the commercial standards. Conclusion The new herbal ointments, developed in our study, have shown promising results. The formula offers mechanical protection without any release of non-biodegradable particles. It maintains the optimum moisture and pH of the skin, while minimising scar-tissue formation. These advantages, in addition to availability, low costs, and easy handling, may support the use of this new herbal formula as an effective and safe alternative treatment, designed to promote the healing of burn injuries.
Collapse
Affiliation(s)
- Ahmed Farhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, KSA
| | - Bader Alsuwayt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, KSA
| | - Farhan Alanazi
- Department of Pharmaceutical Care, Rafha Central Hospital, Ministry of Health, KSA
| | - Abdulhadi Yaseen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, KSA
| | - Mohamed A Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
7
|
Bioavailability of Tannins and Other Oligomeric Polyphenols: a Still to Be Studied Phenomenon. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Jacob C. Redox Active Nutraceuticals: Nutrition and Health in Modern Society: Part 2. Curr Pharm Des 2019; 25:1807-1808. [PMID: 31486744 DOI: 10.2174/138161282516190822143244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Claus Jacob
- Department of Pharmacy Building B 2.1., Room 1.13 Saarland State University Campus D-66123 Saarbruecken, Germany
| |
Collapse
|