1
|
Talebi Kiasari F, Naghshbandi M, Emamikhah M, Moradi Moghaddam O, Niakan Lahiji M, Rohani M, Yazdi N, Movahedi H, Amanollahi A, Irandoost P, Ghafoury R. Evaluation of the effect of Modafinil in the improvement of the level of consciousness in patients with COVID-19 encephalopathy: A randomized controlled trial. Neuropsychopharmacol Rep 2024; 44:490-501. [PMID: 38715471 PMCID: PMC11544445 DOI: 10.1002/npr2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 11/09/2024] Open
Abstract
AIM COVID-19 can lead to encephalopathy and loss of consciousness. This double-blinded randomized clinical trial conducted in Tehran, Iran, aimed to assess the potential effectiveness of modafinil in patients with COVID-19-related encephalopathy. METHODS Nineteen non-intubated COVID-19 patients with encephalopathy were randomized into two groups: a treatment group receiving crushed modafinil tablets and a placebo group receiving starch powder. Modafinil was administered at a dose of 100 mg every 2 h, reaching a peak dosage of 400 mg. The level of consciousness was assessed using the Glasgow Coma Score (GCS) at multiple time points on the day of medication administration. The trial was registered under IRCT20170903036041N3 on 23/5/2021. RESULTS The average age in the modafinil and placebo groups was 75.33 and 70 years, respectively. No significant differences were observed between the two groups in terms of chronic conditions, clinical symptoms, or laboratory data. GCS scores were similar between the groups at baseline (p-value = 0.699). After four doses of modafinil, GCS scores were slightly higher in the treatment group, but this difference was not statistically significant (p-value = 0.581). GCS scores after each round of drug administration didn't significantly differ between the treatment and placebo groups (p-value = 0.908). CONCLUSION Modafinil exhibited a slight improvement in the level of consciousness among COVID-19 patients with encephalopathy, although this improvement did not reach statistical significance when compared to the control group. Further research with larger sample sizes and longer treatment durations is recommended to explore modafinil's potential benefits in managing altered consciousness in COVID-19 patients.
Collapse
Affiliation(s)
- Fatemeh Talebi Kiasari
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobin Naghshbandi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Emamikhah
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Niakan Lahiji
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Yazdi
- Department of Neurology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Amanollahi
- Trauma and Injury Research Center, Critical Care Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Irandoost
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghafoury
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wehrman JJ, Chung CC, Sanders R. Anaesthetics and time perception: A review. Q J Exp Psychol (Hove) 2024; 77:1898-1910. [PMID: 36453756 DOI: 10.1177/17470218221144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Consciousness requires subjective experience in the "now." Establishing "now," however, necessitates temporal processing. In the current article, we review one method of altering consciousness, anaesthetic drug administration, and its effects on perceived duration. We searched PubMed, PsycInfo, and ScienceDirect databases, and article reference sections, for combinations of anaesthetic drugs and time perception tasks, finding a total of 36 articles which met our inclusion criteria. We categorised these articles with regard to whether they altered the felt passage of time, short or long interval timing, or were motor timing tasks. We found that various drugs alter the perceived passage of time; ketamine makes time subjectively slow down while GABAergic drugs make time subjectively speed up. At a short interval there is little established evidence of a shift in time perception, though temporal estimates appear more variable. Similarly, when asked to use time to optimise responses (i.e., in motor timing tasks), various anaesthetic agents make timing more variable. Longer durations are estimated as lasting longer than their objective duration, though there is some variation across articles in this regard. We conclude by proposing further experiments to examine time perception under altered states of consciousness and ask whether it is possible to perceive the passage of time of events which do not necessarily reach the level of conscious perception. The variety of methods used raises the need for more systematic investigations of time perception under anaesthesia. We encourage future investigations into the overlap of consciousness and time perception to advance both fields.
Collapse
Affiliation(s)
| | - Clara C Chung
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
3
|
Zhou Y, Sun Y, He P, Xiong Q, Kang J, Tang Y, Feng Z, Dong X. The efficacy and safety of transcutaneous auricular vagus nerve stimulation for patients with minimally conscious state: a sham-controlled randomized double-blind clinical trial. Front Neurosci 2023; 17:1323079. [PMID: 38156271 PMCID: PMC10752952 DOI: 10.3389/fnins.2023.1323079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a potentially effective neuromodulation technique for addressing neurological disorders, including disorders of consciousness. Expanding upon our prior clinical study, which demonstrated the superior effectiveness of a 4-week taVNS treatment in patients with minimally conscious state (MCS) compared to those in a vegetative state/unresponsive wakefulness state, the aim of this investigation was to evaluate the safety and therapeutic efficacy of taVNS in individuals with MCS through a sham-controlled randomized double-blind clinical trial. Methods A cohort of 50 adult patients (male = 33, female = 17) diagnosed with a MCS were randomly assigned to either the active taVNS (N = 25) or sham taVNS (N = 25) groups. The treatment period lasted for 4 weeks, followed by an 8-week follow-up period. The Coma Recovery Scale-Revised (CRS-R) and Glasgow Coma Scale (GCS) were administered at baseline and weekly during the initial 4 weeks. Additionally, the Disability Rating Scale (DRS) was used to assess the patients' functional abilities via telephone at week 12. Furthermore, various neurophysiological measures, including electroencephalogram (EEG), upper-limb somatosensory evoked potentials (USEP), brainstem auditory evoked potentials (BAEP), and P300 event-related potentials (P300), were employed to monitor changes in brain activity and neural conduction pathways. Results The scores for the active taVNS group in the CRS-R and GCS showed greater improvement over time compared to the sham taVNS group (CRS-R: 1-week, Z = -1.248, p = 0.212; 2-week, Z = -1.090, p = 0.276; 3-week, Z = -2.017, p = 0.044; 4-week, Z = -2.267, p = 0.023. GCS: 1-week, Z = -1.325, p = 0.185; 2-week, Z = -1.245, p = 0.213; 3-week, Z = -1.848, p = 0.065; 4-week, Z = -1.990, p = 0.047). Additionally, the EEG, USEP, BAEP, and P300 also demonstrated significant improvement in the active taVNS group compared to the sham taVNS group at week 4 (EEG, Z = -2.086, p = 0.037; USEP, Z = -2.014, p = 0.044; BAEP, Z = -2.298, p = 0.022; P300 amplitude, Z = -1.974, p = 0.049; P300 latency, t = 2.275, p = 0.027). Subgroup analysis revealed that patients with MCS derived greater benefits from receiving taVNS treatment earlier (CRS-R, Disease duration ≤ 1-month, mean difference = 8.50, 95% CI = [2.22, 14.78], p = 0.027; GCS, Disease duration ≤ 1-month, mean difference = 3.58, 95% CI = [0.14, 7.03], p = 0.044). By week 12, the active taVNS group exhibited lower Disability Rating Scale (DRS) scores compared to the sham taVNS group (Z = -2.105, p = 0.035), indicating a more favorable prognosis for MCS patients who underwent taVNS. Furthermore, no significant adverse events related to taVNS were observed during treatment. Conclusion The findings of this study suggest that taVNS may serve as a potentially effective and safe intervention for facilitating the restoration of consciousness in individuals diagnosed with MCS. This therapeutic approach appears to enhance cerebral functioning and optimize neural conduction pathways. Clinical trial registration http://www.chictr.org.cn, Identifier ChiCTR2200066629.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yejing Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Pei He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yunliang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Zhou M, Ou Y, Wu G, Li K, Peng J, Wang X, Che M, Gong H, Niu P, Liu Y, Feng Z, Qi S. Transcriptomic Analysis Reveals that Activating Transcription Factor 3/c-Jun/Lgals3 Axis Is Associated with Central Diabetes Insipidus after Hypothalamic Injury. Neuroendocrinology 2022; 112:874-893. [PMID: 34763342 DOI: 10.1159/000520865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothalamic injury causes several complicated neuroendocrine-associated disorders, such as water-electrolyte imbalance, obesity, and hypopituitarism. Among these, central diabetes insipidus (CDI), characterized by polyuria, polydipsia, low urine specific gravity, and deficiency of arginine vasopressin contents, is a typical complication after hypothalamic injury. METHODS CDI was induced by hypothalamic pituitary stalk injury in male animals. Behavioral parameters and blood sample were collected to evaluate the characteristics of body fluid metabolism imbalance. The brains were harvested for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in corresponding hypothalamic nuclei. RESULTS Based on transcriptomic analysis, we demonstrated the upregulation of the activating transcription factor 3 (Atf3)/c-Jun axis and identified Lgals3, a microglial activation-related gene, as the most significant target gene in response to the body fluid imbalance in CDI. Furthermore, we found that the microglia possessed elevated phagocytic ability, which could promote the elimination of arginine vasopressin neurons after hypothalamic injury. CONCLUSION Our findings suggested that the Atf3/c-Jun/Lgals3 axis was associated with the microglial activation, and might participate in the loss of functional arginine vasopressin neurons in CDI after hypothalamic injury.
Collapse
Affiliation(s)
- Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangsen Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjie Che
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haodong Gong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Peirong Niu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021; 35:68-85. [PMID: 34236624 PMCID: PMC8266715 DOI: 10.1007/s12028-021-01227-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Background/Objective For patients with disorders of consciousness (DoC) and their families, the search for new therapies has been a source of hope and frustration. Almost all clinical trials in patients with DoC have been limited by small sample sizes, lack of placebo groups, and use of heterogeneous outcome measures. As a result, few therapies have strong evidence to support their use; amantadine is the only therapy recommended by current clinical guidelines, specifically for patients with DoC caused by severe traumatic brain injury. To foster and advance development of consciousness-promoting therapies for patients with DoC, the Curing Coma Campaign convened a Coma Science Work Group to perform a gap analysis. Methods We consider five classes of therapies: (1) pharmacologic; (2) electromagnetic; (3) mechanical; (4) sensory; and (5) regenerative. For each class of therapy, we summarize the state of the science, identify gaps in knowledge, and suggest future directions for therapy development. Results Knowledge gaps in all five therapeutic classes can be attributed to the lack of: (1) a unifying conceptual framework for evaluating therapeutic mechanisms of action; (2) large-scale randomized controlled trials; and (3) pharmacodynamic biomarkers that measure subclinical therapeutic effects in early-phase trials. To address these gaps, we propose a precision medicine approach in which clinical trials selectively enroll patients based upon their physiological receptivity to targeted therapies, and therapeutic effects are measured by complementary behavioral, neuroimaging, and electrophysiologic endpoints. Conclusions This personalized approach can be realized through rigorous clinical trial design and international collaboration, both of which will be essential for advancing the development of new therapies and ultimately improving the lives of patients with DoC. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01227-y.
Collapse
|
6
|
Sleep in disorders of consciousness: diagnostic, prognostic, and therapeutic considerations. Curr Opin Neurol 2021; 33:684-690. [PMID: 33177374 DOI: 10.1097/wco.0000000000000870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Sleep is important in the evaluation of patients with disorders of consciousness (DOC). However, it remains unclear whether reconstitution of sleep could enable consciousness or vice versa. Here we synthesize recent evidence on natural recovery of sleep in DOC, and sleep-promoting therapeutic interventions for recovery of consciousness. RECENT FINDINGS In subacute DOC, physiological sleep--wake cycles and complex sleep patterns are related to better outcomes. Moreover, structured rapid-eye-movement (REM), non-REM (NREM) stages, and presence of sleep spindles correlate with full or partial recovery. In chronic DOC, sleep organization may reflect both integrity of consciousness-supporting brain networks and engagement of those networks during wakefulness. Therapeutic strategies have integrated improvement of sleep and sleep--wake cycles in DOC patients; use of bright light stimulation or drugs enhancing sleep and/or vigilance, treatment of sleep apneas, and neuromodulatory stimulations are promising tools to promote healthy sleep architecture and wakeful recovery. SUMMARY Sleep features and sleep--wake cycles are important prognostic markers in subacute DOC and can provide insight into covert recovery in chronic DOC. Although large-scale studies are needed, preliminary studies in limited patients suggest that therapeutic options restoring sleep and/or sleep--wake cycles may improve cognitive function and outcomes in DOC.
Collapse
|
7
|
Increased orexin A concentrations in cerebrospinal fluid of patients with behavioural variant frontotemporal dementia. Neurol Sci 2021; 43:313-317. [PMID: 33904007 PMCID: PMC8724071 DOI: 10.1007/s10072-021-05250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Orexins are hypothalamic neuropeptides that regulate several physiological functions, such as appetite, arousal, cognition, stress, sleep and metabolism. Emerging pieces of evidence suggest an orexinergic dysfunction in several neuropsychiatric disorders, including depression, anxiety and addiction. A syndromic overlap between behavioural variant frontotemporal dementia (bvFTD) and several psychiatric disorders was recently demonstrated. Therefore, we analysed cerebrospinal fluid (CSF) orexin A concentrations of 40 bvFTD and 32 non-demented patients, correlating neuropeptide concentrations with several clinical characteristics. A significant increase of orexin A concentrations was found in bvFTD patients when compared to controls (p<0.001). CSF orexin A concentration showed a correlation with Mini-Mental State Examination scores, drug assumption, history of compulsive behaviour and extrapyramidal signs. Moreover, we found a relationship between CSF markers of neurodegeneration, total tau and Aβ1–42 and CSF orexin A concentrations. Our study provides evidence of an orexinergic dysfunction in bvFTD, correlating with several clinical symptoms. Further larger studies are needed to confirm our data.
Collapse
|
8
|
Tang H, Qin S, Li W, Chen X, Ulloa L, Zhu Q, Liu B, Gong Y, Zhao Y, Wang S, Li S, Guo Y, Xu Z, Guo Y. P2RX7 in Dopaminergic Neurons of Ventral Periaqueductal Gray Mediates HTWP Acupuncture-Induced Consciousness in Traumatic Brain Injury. Front Cell Neurosci 2021; 14:598198. [PMID: 33519382 PMCID: PMC7838360 DOI: 10.3389/fncel.2020.598198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
The induction of a coma by traumatic brain injury (TBI) is a crucial factor for poor clinical prognoses. We report that acupuncture at the hand 12 Jing-Well points (HTWP) improved consciousness and neurologic function in TBI rats. Gene chip analyses showed that HTWP acupuncture mostly activated genes modulating neuronal projections (P2rx7, P2rx3, Trpv1, Tacr1, and Cacna1d), protein secretion (Exoc1, Exoc3l1, Fgb, and Fgr), and dopamine (DA) receptor D3 (Drd3) in the ventral periaqueductal gray (vPAG), among which the expression rate of P2rx7 was the most obviously increased. Acupuncture also increased the expression and excitability of DA and P2RX7 neurons, and the DA neurons expressed P2RX7, P2RX3, and TRPV1 in the vPAG. Intracerebroventricular administration of P2RX7, P2RX3, or TRPV1 antagonists blocked acupuncture-induced consciousness, and the subsequent injection of a P2RX7 antagonist into the vPAG nucleus also inhibited this effect. Our findings provide evidence that acupuncture alleviates TBI-induced comas via DA neurons expressing P2RX7 in the vPAG, so as to reveal the cellular and molecular mechanisms of the improvement of TBI clinical outcomes by HTWP acupuncture.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuyi Chen
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China.,Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China
| | - Luis Ulloa
- Department of Anesthesiology, Center of Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Qiumei Zhu
- Luoding Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Songtao Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Banks WA. A Spectrum of Topics for 2019: Advances in Neuroinflammation, Oxidative Stress, Obesity, Diabetes Mellitus, Cardiovascular Disease, Autism, Exosomes, and Central Nervous System Diseases. Curr Pharm Des 2020; 26:1-5. [PMID: 32122292 DOI: 10.2174/138161282601200225102049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in various fields were discussed in the reviews and original research articles published in 2019 in Current Pharmaceutical Design. Here, I review some of the major highlights for selected areas. A better understanding of disease mechanisms was a prominent recurrent theme and new therapeutic targets based on those mechanisms are highlighted here. Inflammation and oxidative stress are major features of many diseases, therefore, interventions to address these processes are reviewed. Although repurposing of old drugs occurred in several fields, drug targeting and drug delivery, especially of nanoparticles, also continues to be a major area of interest.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, 1660 S. Columbian Way, Seattle, WA 98108 Seattle, WA, United States
| |
Collapse
|