1
|
Ksovreli M, Kachlishvili T, Skhvitaridze M, Nadaraia L, Goliadze R, Kamashidze L, Zurabiani K, Batsatsashvili T, Kvachantiradze N, Gverdtsiteli M, Kantaria T, Piot O, Courageot MP, Terryn C, Tchelidze P, Katsarava R, Kulikova N. Wound Closure Promotion by Leucine-Based Pseudo-Proteins: An In Vitro Study. Int J Mol Sci 2024; 25:9641. [PMID: 39273588 PMCID: PMC11395615 DOI: 10.3390/ijms25179641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Our research explores leucine-based pseudo-proteins (LPPs) for advanced wound dressings, focusing on their effects on wound healing in an in vitro model. We assessed three types of LPP films for their ability to enhance wound closure rates and modulate cytokine production. They all significantly improved wound closure compared to traditional methods, with the 8L6 and copolymer films showing the most pronounced effects. Notably, the latter exhibited an optimal cytokine profile: an initial burst of pro-inflammatory TNF-α, followed by a controlled release of IL-6 during the proliferative phase and a significant increase in anti-inflammatory IL-10 during remodeling. This balanced cytokine response suggests that the copolymer film not only accelerates wound closure but also supports a well-regulated healing process, potentially reducing fibrosis and abnormal scarring, underscoring the potential of copolymer LPPs as advanced wound dressing materials. Future research will aim to elucidate the specific signaling pathways activated by the copolymer LPP to better understand its mechanism of action. Overall, LPP films offer a promising approach to improving wound care and could lead to more effective treatments for complex wounds.
Collapse
Affiliation(s)
- Mariam Ksovreli
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Tinatin Kachlishvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Mariam Skhvitaridze
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Lili Nadaraia
- Carl Zeiss Scientific and Education Center, New Vision University, 0159 Tbilisi, Georgia
| | - Rusudan Goliadze
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Luka Kamashidze
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Knarita Zurabiani
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Tatuli Batsatsashvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Nino Kvachantiradze
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Marekhi Gverdtsiteli
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Olivier Piot
- BioSpectroscopie Translationnelle (BioSpecT) Unit, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Marie-Pierre Courageot
- BioSpectroscopie Translationnelle (BioSpecT) Unit, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Christine Terryn
- La plateforme en Imagerie Cellulaire et Tissulaire (PICT), University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Pavel Tchelidze
- Faculty of Healthcare, East European University, 0159 Tbilisi, Georgia
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Nina Kulikova
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| |
Collapse
|
2
|
Wang H, Huddleston S, Yang J, Ameer GA. Enabling Proregenerative Medical Devices via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306326. [PMID: 38043945 DOI: 10.1002/adma.202306326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samantha Huddleston
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Yang
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
4
|
Ksovreli M, Kachlishvili T, Mtiulishvili T, Dzmanashvili G, Batsatsashvili T, Zurabiani K, Tughushi D, Kantaria T, Nadaraia L, Rusishvili L, Piot O, Terryn C, Tchelidze P, Katsarava R, Kulikova N. Leucine-Based Pseudo-Proteins (LPPs) as Promising Biomaterials: A Study of Cell-Supporting Properties. Polymers (Basel) 2023; 15:3328. [PMID: 37571222 PMCID: PMC10422583 DOI: 10.3390/polym15153328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Scaffold-based systems have become essential in biomedical research, providing the possibility of building in vitro models that can better mimic tissue/organic physiology. A relatively new family of biomimetics-pseudo-proteins (PPs)-can therefore be considered especially promising in this context. Three different artificial leucine-based LPP films were tested in vitro as potential scaffolding materials. In vitro experiments were performed using two types of cells: primary mouse skin fibroblasts and a murine monocyte/macrophages cell line, RAW264.7. Cell adhesion and cell spreading were evaluated according to morphological parameters via scanning electron microscopy (SEM), and they were assessed according to actin cytoskeleton distribution, which was studied via confocal laser microscopy. Cell proliferation was evaluated via an MTT assay. Cell migration was studied using time-lapse microscopy. SEM images for both types of cells demonstrated prominent adhesion and perfect cell spreading on all three LPPs. Analyses of actin cytoskeleton organization revealed a high number of focal adhesions and prominent motility-associated structures. A certain stimulation of cell proliferation was detected in the cases of all three LPPs, and two of them promoted macrophage migration. Overall, our data suggest that the LPPs used in the study can be considered potential cell-friendly scaffolding materials.
Collapse
Affiliation(s)
- Mariam Ksovreli
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Tinatin Kachlishvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Tevdore Mtiulishvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Giorgi Dzmanashvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Tatuli Batsatsashvili
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Knarita Zurabiani
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - David Tughushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Lili Nadaraia
- Institute of Physical Material Science and Materials Technologies, Technical University of Georgia, 0159 Tbilisi, Georgia
- Carl Zeiss Scientific and Education Center, New Vision University, 0159 Tbilisi, Georgia
| | - Levan Rusishvili
- Department of Morphology, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, 0159 Tbilisi, Georgia
| | - Olivier Piot
- BioSpecT Unit, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Christine Terryn
- BioSpecT Unit, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Pavel Tchelidze
- Carl Zeiss Scientific and Education Center, New Vision University, 0159 Tbilisi, Georgia
- Faculty of Healthcare, East European University, 0159 Tbilisi, Georgia
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| | - Nina Kulikova
- Institute of Cellular and Molecular Biology, Agricultural University of Georgia, 0159 Tbilisi, Georgia
| |
Collapse
|
5
|
Kolekar YA, Bhanage BM. Pd-Catalyzed Oxidative Aminocarbonylation of Arylboronic Acids with Unreactive Tertiary Amines via C-N Bond Activation. J Org Chem 2021; 86:14028-14035. [PMID: 33908785 DOI: 10.1021/acs.joc.1c00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient synthesis of tertiary amides from aryl boronic acids and inert tertiary amines through the oxidative carbonylation via C(sp3)-N bond activation is presented. This protocol significantly restricts the homocoupling biarylketone product. It involves the use of a homogeneous PdCl2/CuI catalyst and a heterogeneous Pd/C based catalyst, which promotes C(sp3)-N bond activation of tertiary amines with aryl boronic acids. This process represents a ligand-free, base-free, and recyclable catalyst along with an ideal oxidant like molecular oxygen.
Collapse
Affiliation(s)
- Yuvraj A Kolekar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, 400019, India
| | | |
Collapse
|
6
|
Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR. Amino acid derived biopolymers: Recent advances and biomedical applications. Int J Biol Macromol 2021; 188:542-567. [PMID: 34384802 DOI: 10.1016/j.ijbiomac.2021.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023]
Abstract
Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.
Collapse
Affiliation(s)
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, NOIDA, India.
| | | | | | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, NOIDA, India.
| |
Collapse
|
7
|
Ramachandran PV, Hamann HJ, Choudhary S. Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids. Org Lett 2020; 22:8593-8597. [PMID: 33108211 DOI: 10.1021/acs.orglett.0c03184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amine-boranes serve as dual-purpose reagents for direct amidation, activating aliphatic and aromatic carboxylic acids and, subsequently, delivering amines to provide the corresponding amides in up to 99% yields. Delivery of gaseous or low-boiling amines as their borane complexes provides a major advantage over existing methodologies. Utilizing amine-boranes containing borane incompatible functionalities allows for the preparation of functionalized amides. An intermolecular mechanism proceeding through a triacyloxyborane-amine complex is proposed.
Collapse
Affiliation(s)
- P Veeraraghavan Ramachandran
- Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Henry J Hamann
- Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shivani Choudhary
- Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020; 5:biomimetics5040049. [PMID: 33050136 PMCID: PMC7709492 DOI: 10.3390/biomimetics5040049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches appear nowadays highly promising for the regeneration of injured/diseased tissues. Biomimetic scaffolds are continuously been developed to act as structural support for cell growth and proliferation as well as for the delivery of cells able to be differentiated, and also of bioactive molecules like growth factors and even signaling cues. The current research concerns materials employed to develop biological scaffolds with improved features as well as complex preparation techniques. In this work, hybrid systems based on natural polymers are discussed and the efforts focused to provide new polymers able to mimic proteins and DNA are extensively explained. Progress on the scaffold fabrication technique is mentioned, those processes based on solution and melt electrospinning or even on their combination being mainly discussed. Selection of the appropriate hybrid technology becomes vital to get optimal architecture to reasonably accomplish the final applications. Representative examples of the recent possibilities on tissue regeneration are finally given.
Collapse
Affiliation(s)
- Omid Yousefzade
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bedukidze Univesity Campus, Tbilisi 0131, Georgia;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-401-5649
| |
Collapse
|
9
|
Perioli L. Active Ingredients of Natural Sources and their Applications. Curr Pharm Des 2020; 26:517-518. [PMID: 32213155 DOI: 10.2174/138161282606200306105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123, Perugia, Italy
| |
Collapse
|