1
|
Wu Y, Wang X, Zhang Y, Wen Z, Li Y, Zhang K, Gosar N, Li Q, Mao J, Gong S. Proanthocyanidins Ameliorate LPS-Inhibited Osteogenesis of PDLSCs by Restoring Lysine Lactylation. Int J Mol Sci 2024; 25:2947. [PMID: 38474198 DOI: 10.3390/ijms25052947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/β-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Yuanyuan Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Kehan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Nuerlan Gosar
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| |
Collapse
|
2
|
Artasensi A, Mazzotta S, Baron G, Aldini G, Fumagalli L. Concise synthesis of deuterium-labelled proanthocyanidin metabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone as an analytical tool. RSC Adv 2024; 14:6410-6415. [PMID: 38380241 PMCID: PMC10877580 DOI: 10.1039/d3ra08665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Deuterated proanthocyanidin metabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone has been successfully produced. This metabolite is responsible for several proanthocyanidin protective effects in the field of cancer chemoprevention, skin wrinkle-prevention, and antimicrobials. The synthetic approach applied employs a short reaction sequence and allows the incorporation of four deuterium atoms on non-exchangeable sites, making it an attractive strategy to produce a stable isotopically labeled internal standard for quantitative mass spectrometry isotope dilution-based methods, as demonstrated by developing an LC-MS/MS method to quantify DHPV in urine samples. Overall, this efficient synthesis provides a valuable analytical tool for the study of the metabolic conversion of proanthocyanidins thus helping to investigate the biological effect and establishing the active dose of the key catabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, University of Milan 20133 Milan Italy
| | - Sarah Mazzotta
- Department of Chemistry, University of Milan 20133 Milan Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan 20133 Milan Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan 20133 Milan Italy
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, University of Milan 20133 Milan Italy
| |
Collapse
|
3
|
Liu J, Cui M, Wang Y, Wang J. Trends in parthenolide research over the past two decades: A bibliometric analysis. Heliyon 2023; 9:e17843. [PMID: 37483705 PMCID: PMC10362189 DOI: 10.1016/j.heliyon.2023.e17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Parthenolide (PTL) is a new compound extracted from traditional Chinese medicine. In recent years, it has been proven to play an undeniable role in tumors, autoimmune diseases, and inflammatory diseases. Similarly, an increasing number of experiments have also confirmed the biological mechanism of PTL in these diseases. In order to better understand the development trend and potential hot spots of PTL in cancer and other diseases, we conducted a detailed bibliometric analysis. The purpose of presenting this bibliometric analysis was to highlight and inform researchers of the important research directions, co-occurrence relationships and research status in this field. Publications related to PTL research from 2002 to 2022 were extracted on the web of science core collection (WoSCC) platform. CiteSpace, VOSviewers and R package "bibliometrix" were applied to build relevant network diagrams. The bibliometric analysis was presented in terms of performance analysis (including publication statistics, top publishing countries, top publishing institutions, publishing journals and co-cited journals, authors and co-cited authors, co-cited references statistics, citation bursts statistics, keyword statistics and trend topic statistics) and science mapping (including citations by country, citations by institution, citations by journal, citations by author, co-citation analysis, and keyword co-occurrence). The detailed discussion of the results explained the focus and latest trends from the bibliometric analysis. Finally, the current status and shortcomings of the research field on PTLwere clearly pointed out for reference by scholars.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
- Department of Rehabilitation Medicine, Huludao Central Hospital, 125000 Huludao, Liaoning, China
| | - Meng Cui
- Department of Hospice Care, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| |
Collapse
|
4
|
Huang R, Li R, Chen J, Lv M, Xu X. Network pharmacology analysis of the pharmacological mechanism of Artemisia lavandulaefolia DC. in rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154905. [PMID: 37348247 DOI: 10.1016/j.phymed.2023.154905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE The traditional She medicine is a notable type of traditional Chinese medicine, which has been applied for a long history despite the lack of sufficient mechanistic understanding. Our study revealed the possible molecular mechanism of sesquiterpene 5α-Hydroxycostic acid, active ingredient of traditional She medicine Artemisia lavandulaefolia DC., in the treatment of rheumatoid arthritis (RA). METHODS RA-fibroblast like synoviocytes (RA-FLSs) were treated with 5α-Hydroxycostic acid, Anthemidin, and methotrexate (MTX). CCK-8 and ELISA were used to measure the resultant viability of RA-FLSs and to quantify pro-inflammatory cytokines. Target genes of 5α-Hydroxycostic acid and Anthemidin, RA-related differentially expressed genes, and RA-related genes were retrieved by bioinformatics analyses, results of which were further intersected to identify candidate genes. The protein-protein interaction network was constructed to develop the pharmacophore model. The molecular docking was simulated to determine the core target androgen receptor (AR) for subsequent molecular mechanism investigation in vitro. RESULTS The 5ɑ-Hydroxycostic acid, Anthemidin, or MTX of different concentrations inhibited the viability of RA-FLSs, and downregulated the levels of proinflammatory cytokines. The pharmacophore model and molecular docking of 10 candidate targets with 5α-Hydroxycostic acid were successfully established. In vitro experiments provided evidence confirming that 5α-Hydroxycostic acid elevated AR expression to inhibit inflammatory responses of RA-FLSs and degradation of extracellular matrix. CONCLUSION Therefore, this study reveals the active ingredient sesquiterpene 5α-Hydroxycostic acid of traditional She medicine Artemisia lavandulaefolia DC., and illustrates potential molecular mechanism in RA treatment by upregulating AR expression. This study is the first to report the effect of the active ingredient sesquiterpenes in traditional She medicine A.lavandulaefolia DC on RA and elucidate the underlying molecular mechanism associated with up-regulated AR expression. This study provides new insights into the mechanistic understanding of traditional She medicine in the treatment of RA.
Collapse
Affiliation(s)
- Ruofei Huang
- Department of General Endocrinology, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Ruya Li
- Department of Pharmacy, The People's Hospital of Jinyun, Jinyun 321400, PR China
| | - Jun Chen
- Department of Pharmacy, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Meiyan Lv
- Department of Laboratory Medicine, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Xiangwei Xu
- Department of Pharmacy, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China.
| |
Collapse
|
5
|
Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells. Toxicol Res 2022; 38:331-343. [DOI: 10.1007/s43188-021-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
|
6
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
7
|
Affiliation(s)
- Patrícia Rijo
- CBIOS - Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|