1
|
Lim DW, Lee C. The Effects of Natural Product-Derived Extracts for Longitudinal Bone Growth: An Overview of In Vivo Experiments. Int J Mol Sci 2023; 24:16608. [PMID: 38068932 PMCID: PMC10706747 DOI: 10.3390/ijms242316608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Approximately 80% of children with short stature are classified as having Idiopathic Short Stature (ISS). While growth hormone (GH) treatment received FDA approval in the United States in 2003, its long-term impact on final height remains debated. Other treatments, like aromatase inhibitors, metformin, and insulin-like growth factor-1 (IGF-1), have been explored, but there is no established standard treatment for ISS. In South Korea and other Asian countries, East Asian Traditional Medicine (EATM) is sometimes employed by parents to potentially enhance their children's height growth, often involving herbal medicines. One such product, Astragalus membranaceus extract mixture HT042, claims to promote height growth in children and has gained approval from the Korean Food and Drug Administration (KFDA). Research suggests that HT042 supplementation can increase height growth in children without skeletal maturation, possibly by elevating serum IGF-1 and IGF-binding protein-3 levels. Preclinical studies also indicate the potential benefits of natural products, including of EATM therapies for ISS. The purpose of this review is to offer an overview of bone growth factors related to ISS and to investigate the potential of natural products, including herbal preparations, as alternative treatments for managing ISS symptoms, based on their known efficacy in in vivo studies.
Collapse
Affiliation(s)
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| |
Collapse
|
2
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
3
|
Yue H, Tian Y, Feng X, Bo Y, Leng Z, Dong P, Xue C, Wang J. Novel peptides from sea cucumber intestinal hydrolysates promote longitudinal bone growth in adolescent mice through accelerating cell cycle progress by regulating glutamine metabolism. Food Funct 2022; 13:7730-7739. [PMID: 35762389 DOI: 10.1039/d2fo01063a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sea cucumber intestines are recognized as a major by-product in the sea cucumber processing industry and have been shown to exhibit bioactive properties. However, whether the sea cucumber intestine is beneficial for osteogenesis remains unknown. In this study, low molecular weight peptides rich in glutamate/glutamine were obtained from sea cucumber intestines (SCIP) by enzymatic hydrolysis, and orally administered to adolescent mice to investigate the effects on longitudinal bone growth. The results showed that the SCIP supplement significantly increased the femur length and new bone formation rate by 9.6% and 56.3%, and elevated the levels of serum osteogenic markers alkaline phosphatase (ALP), Collagen I and osteocalcin (OCN). Notably, H&E staining showed that SCIP significantly increased the height of the growth plate, in which the height of the proliferation zone was elevated by 95.6%. Glutamine is a major determinant of bone growth. SCIP supplement significantly increased glutamine levels in the growth plate by 44.2% and upregulated the expression of glutamine metabolism-related enzymes glutaminase 1 (Gls1) and glutamate dehydrogenase 1 (GLUD1) in the growth plate. Furthermore, SCIP supplement upregulated growth plate acetyl coenzyme A levels to promote histone acetylation and accelerated cell cycle progression by upregulating Sox9 expression, thereby contributing to rapid chondrocyte proliferation. To the best of our knowledge, this is the first report where SCIP could enhance longitudinal bone growth via promoting growth plate chondrocyte proliferation. The present study will provide new ideas and a theoretical basis for the high-value utilization of sea cucumber intestines.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, Shandong, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yuying Bo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Zhibing Leng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| |
Collapse
|