1
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Wang J, Luo H, Yang L, Yuan H. ARAP1-AS1: a novel long non-coding RNA with a vital regulatory role in human cancer development. Cancer Cell Int 2024; 24:270. [PMID: 39090630 PMCID: PMC11295494 DOI: 10.1186/s12935-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have garnered significant attention in biomedical research due to their pivotal roles in gene expression regulation and their association with various human diseases. Among these lncRNAs, ArfGAP With RhoGAP Domain, Ankyrin Repeat, And PH Domain 1 - Antisense RNA 1 (ARAP1-AS1) has recently emerged as an novel oncogenic player. ARAP1-AS1 is prominently overexpressed in numerous solid tumors and wields influence by modulating gene expression and signaling pathways. This regulatory impact is realized through dual mechanisms, involving both competitive interactions with microRNAs and direct protein binding. ARAP1-AS1 assumes an important role in driving tumorigenesis and malignant tumor progression, affecting biological characteristics such as tumor expansion and metastasis. This paper provides a concise review of the regulatory role of ARAP1-AS1 in malignant tumors and discuss its potential clinical applications as a biomarker and therapeutic target. We also address existing knowledge gaps and suggest avenues for future research. ARAP1-AS1 serves as a prototypical example within the burgeoning field of lncRNA studies, offering insights into the broader landscape of non-coding RNA molecules. This investigation enhances our comprehension of the complex mechanisms that govern the progression of cancer.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Lu Yang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi Province, 332007, P.R. China.
| |
Collapse
|
3
|
Song Z, Xu S, Gu X, Feng Q, Wang C. LncRNA PITPNA-AS1 mediates the diagnostic potential of miR-129-5p in prostate cancer. BMC Urol 2024; 24:146. [PMID: 39003446 PMCID: PMC11245843 DOI: 10.1186/s12894-024-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND LncRNA has an effective value in many diseases, which has long been applied in the diagnosis, treatment and prognosis of prostate cancer. This study focused on lncRNA PITPNA-AS1, and its diagnostic potential in prostate cancer has been explored. METHODS The expression of PITPNA-AS1 and miR-129-5p in prostate cancer serum and sample cells was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of PITPNA-AS1 and clinicopathological parameters was considered. ROC curve prompted the diagnostic value of PITPNA-AS1. The effect of PITPNA-AS1 on prostate cancer cells was verified using vitro cells assay. Luciferase activity assay and RIP assay demonstrated the sponge relationship of PITPNA-AS1 to miR-129-5p. RESULTS PITPNA-AS1 level was increased, while miR-129-5p was obviously decreased in prostate cancer. PITPNA-AS1 expression was associated with Gleason grade, lymph node metastasis and TNM stage in patients. The area under the curve (AUC) was 0.910, with high sensitivity and specificity. PITPNA-AS1 was elucidated to directly target miR-129-5p, whereas silencing PITPNA-AS1 negatively affected prostate cancer cell proliferation, migration and invasion. Intervention of miR-129-5p inhibitor reversed the effect of silencing PITPNA-AS1 on cells. CONCLUSIONS PITPNA-AS1 was relatively highly expressed in prostate cancer and mediated the pathophysiological process of patients, which may serve as a diagnostic indicator. Silencing of the PITPNA-AS1 sponge miR-129-5p inhibited the biological function of the cells, indicating that PITPNA-AS1 may represent a novel therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Zhaolu Song
- Department of Urology Surgery, Jiaozhou Central Hospital of Qingdao, Shandong, 266300, China
| | - Silei Xu
- Medical School of University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Xiaohui Gu
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China
| | - Qiang Feng
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China.
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
4
|
Chen X, Li J, Guan X, Bai Y, Wang K. Abnormal activation of genomic LINE1 elements caused by DNA demethylation contributes to lncRNA CASC9 overexpression in esophageal squamous cell carcinoma. Heliyon 2024; 10:e32857. [PMID: 38975080 PMCID: PMC11226909 DOI: 10.1016/j.heliyon.2024.e32857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Long noncoding RNA (lncRNA) cancer susceptibility 9 (CASC9) has been found to be overexpressed and functions as an oncogene in many cancer types. We investigated the molecular mechanism underlying CASC9 overexpression in esophageal squamous cell carcinoma (ESCC). Transcripts containing exons 2 and 6 and exons 4 and 6 showed the highest CASC9 expression levels in ESCC, no transcripts were detected in the normal esophageal epithelial Het1A cell line. The Long Interspersed Nuclear Element-1 (LINE1 or L1) element in the genome was found to participate in the evolution of lncRNA CASC9, the antisense promoter (ASP) of L1 provides the cis-regulatory elements necessary for CASC9 activation, and the antisense chain of L1 participates in the formation of exons of CASC9. The activation of the antisense promoter was due to the aberrant hypomethylation of L1 elements. An active enhancer element was identified in the downstream region of CASC9 gene by ChIP-seq and ChIP-qPCR. The interaction between ASP and the enhancer elements was confirmed by chromosome conformation capture (3C). Thus, our results suggest that the L1 ASP activation due to aberrant hypomethylation and downstream enhancer interaction plays a key role in the overexpression of lncRNA CASC9 in ESCC.
Collapse
Affiliation(s)
- Xuedan Chen
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Juan Li
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 400038, China
| | - Xingying Guan
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Kai Wang
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
5
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
6
|
Lu Z, Zhong H, Tang L, Luo J, Zhou W, Liu L. Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network. PLoS Comput Biol 2023; 19:e1011634. [PMID: 38019786 PMCID: PMC10686445 DOI: 10.1371/journal.pcbi.1011634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
There is a growing body of evidence indicating the crucial roles that long non-coding RNAs (lncRNAs) play in the development and progression of various diseases, including cancers, cardiovascular diseases, and neurological disorders. However, accurately predicting potential lncRNA-disease associations remains a challenge, as existing methods have limitations in extracting heterogeneous association information and handling sparse and unbalanced data. To address these issues, we propose a novel computational method, called HGC-GAN, which combines heterogeneous graph convolutional neural networks (GCN) and generative adversarial networks (GAN) to predict potential lncRNA-disease associations. Specifically, we construct a lncRNA-miRNA-disease heterogeneous network by integrating multiple association data and sequence information. The GCN-based generator is then employed to aggregate neighbor information of nodes and obtain node embeddings, which are used to predict lncRNA-disease associations. Meanwhile, the GAN-based discriminator is trained to distinguish between real and fake lncRNA-disease associations generated by the generator, enabling the generator to improve its ability to generate accurate lncRNA-disease associations gradually. Our experimental results demonstrate that HGC-GAN performs better in predicting potential lncRNA-disease associations, with AUC and AUPR values of 0.9591 and 0.9606, respectively, under 10-fold cross-validation. Moreover, our case study further confirms the effectiveness of HGC-GAN in predicting potential lncRNA-disease associations, even for novel lncRNAs without any known lncRNA-disease associations. Overall, our proposed method HGC-GAN provides a promising approach to predict potential lncRNA-disease associations and may have important implications for disease diagnosis, treatment, and drug development.
Collapse
Affiliation(s)
- Zhonghao Lu
- School of Information, Yunnan Normal University, Yunnan, People’s Republic of China
| | - Hua Zhong
- School of Information, Yunnan Normal University, Yunnan, People’s Republic of China
| | - Lin Tang
- Key Laboratory of Educational Information for Nationalities Ministry of Education, Yunnan Normal University, Yunnan, People’s Republic of China
| | - Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, School of Life Sciences and School of Ecology and Environment, Yunnan University, Kunming, People’s Republic of China
| | - Wei Zhou
- School of Software, Yunnan University, Kunming, People’s Republic of China
| | - Lin Liu
- School of Information, Yunnan Normal University, Yunnan, People’s Republic of China
| |
Collapse
|
7
|
Nie Q, Cao H, Yang J, Liu T, Wang B. PI3K/Akt signalling pathway-associated long noncoding RNA signature predicts the prognosis of laryngeal cancer patients. Sci Rep 2023; 13:14764. [PMID: 37679508 PMCID: PMC10485045 DOI: 10.1038/s41598-023-41927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
The PI3K/Akt signalling pathway is associated with the occurrence and development of tumours and significantly affects the prognosis of patients. We established a predictive signature based on the PI3K/Akt pathway to predict the prognosis of patients. The RNA-seq and clinical data of laryngeal cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. Three lncRNAs (MNX1-AS1, LINC00330, LSAMP-AS1) were selected through univariate, multivariate Cox and log-rank test analysis to establish a prognostic signature. The patients were then divided into high-risk and low-risk groups based on their risk score. In the TCGA training set, the survival time of the high-risk group was shorter than that of the low-risk group (P < 0.01). Follicular helper T cells were lower in the high-risk group (P = 0.022), and CCR, inflammation promotion, parainflammation, and type I IFN immune function were suppressed. The results of the drug sensitivity analysis suggest that the high-risk group is sensitive to AKT inhibitors. The establishment of the signature was also verified based on the clinical data. Three lncRNAs can facilitate the migration, invasion, and vitality of cancer cells in vitro, and vice versa. Moreover, p-AKT (Ser473) and p-PI3K were highly activated in the cells overexpressing the abovementioned three lncRNAs. The PI3K/Akt signalling pathway-associated prognosis signature has a good predictive effect.
Collapse
Affiliation(s)
- Qian Nie
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - JianWang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Tao Liu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Hebei, 050000, China.
| |
Collapse
|
8
|
Yu H, Gu L, Du L, Dong Z, Li Z, Yu M, Yin Y, Wang Y, Yu L, Ma H. Identification and analysis of key hypoxia- and immune-related genes in hypertrophic cardiomyopathy. Biol Res 2023; 56:45. [PMID: 37559135 PMCID: PMC10410988 DOI: 10.1186/s40659-023-00451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM), an autosomal dominant genetic disease, is the main cause of sudden death in adolescents and athletes globally. Hypoxia and immune factors have been revealed to be related to the pathology of HCM. There is growing evidence of a role for hypoxia and inflammation as triggers and enhancers in the pathology in HCM. However, the role of hypoxia- and immune-related genes in HCM have not been reported. METHODS Firstly, we obtained four HCM-related datasets from the Gene Expression Omnibus (GEO) database for differential expression analysis. Immune cells significantly expressed in normal samples and HCM were then screened by a microenvironmental cell population counter (MCP-counter) algorithm. Next, hypoxia- and immune-related genes were screened by the LASSO + support vector machine recursive feature elimination (SVM-RFE) and weighted gene co-expression network analysis (WGCNA). Single-gene enrichment analysis and expression validation of key genes were then performed. Finally, we constructed a competing endogenous RNA (ceRNA) network of key genes. RESULTS In this study, 35 differentially expressed hypoxia genes were found. By using LASSO + SVM-RFE analysis, 10 more targets with differentially expressed hypoxia genes were identified. The MCP-count algorithm yielded five differentially expressed immune cells, and after assessing them for WGCNA characteristics, 612 immune genes were discovered. When hypoxia and immune genes were combined for cross-tabulation analysis, three hypoxia- and immune-related genes (ATP2A2, DDAH1, and OMA1) were identified. CONCLUSION Based on hypoxia characteristic genes, three key genes were identified. These were also significantly related to immune activation, which proves a theoretical basis and reference value for studying the relationship between HCM and hypoxia and immunity.
Collapse
Affiliation(s)
- Haozhen Yu
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lanxin Gu
- University of Southern California, Los Angeles, CA, 90089, USA
| | - Linfang Du
- Medical School of Yan'an University, Yan'an University, Yan'an, 716000, China
| | - Zhao Dong
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mujun Yu
- Medical School of Yan'an University, Yan'an University, Yan'an, 716000, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Gan B, He Y, Ma Y, Mao L, Liao C, Deng G. Identification of a novel lncRNA prognostic signature and analysis of functional lncRNA AC115619.1 in hepatocellular carcinoma. Front Pharmacol 2023; 14:1167418. [PMID: 37614318 PMCID: PMC10442647 DOI: 10.3389/fphar.2023.1167418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the deadliest malignancy. Long non-coding RNAs (lncRNAs) are involved in the development of multiple human malignancies. This study aimed to establish a reliable signature and identify novel biomarkers for HCC patients. Methods: Differentially expressed lncRNAs (DElncRNAs) were identified from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Univariate, LASSO, and multivariate Cox regression analyses were applied to screen the prognostic lncRNAs and establish a prognostic model. Receiver operating characteristic (ROC) curves and Kaplan-Meier analyses were conducted to validate the prognostic value of this model. The association between lncRNAs and differential m6A genes was analyzed by Spearman's analysis. A series of bioinformatic and in vitro experiments were applied to explore the function of hub lncRNA. Results: A total of 32 DElncRNAs were identified, and 12 DElncRNAs were associated with the prognosis of HCC patients. A prognostic signature comprising six prognostic lncRNAs (LINC02428, LINC02163, AC008549.1, AC115619.1, CASC9, and LINC02362) was constructed, and the model exhibited an excellent capacity for prognosis prediction. Furthermore, 12 differential m6A regulators were identified, and RBMX was found to be correlated negatively with the hub lncRNA AC115619.1. The expression level of AC115619.1 was lower in HCC tissues than that in normal tissues and was significantly related to clinicopathologic features, survival rate, and drug sensitivity. Overexpression of AC115619.1 notably inhibited the proliferation, migration, and invasion of HCC cells. Conclusion: This study provided a promising prognostic signature for HCC patients and identified AC115619.1 as a novel biomarker, which plays an essential role in regulating the progression of HCC.
Collapse
Affiliation(s)
- Binliang Gan
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Youwu He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Yonggang Ma
- Department of NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Linfeng Mao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
10
|
Zhou J, Song G, Su M, Zhang H, Yang T, Song Z. Long noncoding RNA CASC9 promotes pancreatic cancer progression by acting as a ceRNA of miR-497-5p to upregulate expression of CCND1. ENVIRONMENTAL TOXICOLOGY 2023; 38:1251-1264. [PMID: 36947456 DOI: 10.1002/tox.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is an aggressive malignancy with poor prognosis. Accumulating studies have showed that long non-coding RNA (lncRNA) is a crucial regulator in various tumorigenesis and progression including PC. This research aims to explore the roles and molecular mechanism of lncRNA cancer susceptibility candidate 9 (CASC9) in PC. METHODS The expression levels of lncRNA CASC9 and miR-497-5p were evaluated in PC tissues and paired adjacent healthy tissues by quantitative real-time PCR. PC cell lines were transfected with lentivirus targeting lncRNA CASC9, and cells proliferation, migration and invasion tests were conducted. Dual luciferase reporter assays were also carried out to explore the relationship between lncRNA CASC9, miR-497-5p and Cyclin D1 (CCND1). RESULTS LncRNA CASC9 was significantly up-regulated in PC tissues, while miR-497-5p expression was down-regulated. Down-regulation of lncRNA CASC9 in PC cells can significantly suppress the cell aggressiveness both in vitro and in vivo; moreover, knock-down of miR-497-5p could neutralize this impact. Additionally, the luciferase activity assay has assured that CCND1 was a downstream target of miR-497-5p. CONCLUSION LncRNA CASC9 can promote the PC progression by modulating miR-497-5p/CCND1 axis, which is potential target for PC treatment.
Collapse
Affiliation(s)
- Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mingqi Su
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Fang D, Fang Y, Zhang W, Xiang Y, Cheng X, Liang M, Xia H. Comprehensive Analysis of Quantitative Proteomics With DIA Mass Spectrometry and ceRNA Network in Intrahepatic Cholestasis of Pregnancy. Front Cell Dev Biol 2022; 10:854425. [PMID: 35938169 PMCID: PMC9354660 DOI: 10.3389/fcell.2022.854425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific complication characterized by pruritus without skin damage and jaundice. The poor perinatal outcomes include fetal distress, preterm birth, and unexpected intrauterine death. However, the mechanism of ICP leading to poor prognosis is still unclear. Methods: We analyzed 10 ICP and 10 normal placental specimens through quantitative proteomics of data-independent acquisition (DIA) to screen and identify differentially expressed proteins. GO, KEGG, COG/KOG, StringDB, InterProScan, Metascape, BioGPS, and NetworkAnalyst databases were used in this study. PITA, miRanda, TargetScan, starBase, and LncBase Predicted v.2 were used for constructing a competing endogenous RNA (ceRNA) network. Cytoscape was used for drawing regulatory networks, and cytoHubba was used for screening core nodes. The ICP rat models were used to validate the pathological mechanism. Results: GO, KEGG, and COG/KOG functional enrichment analysis results showed the differentially expressed proteins participated in autophagy, autophagosome formation, cofactor binding, JAK-STAT signaling pathway, and coenzyme transport and metabolism. DisGeNET analysis showed that these differentially expressed proteins were associated with red blood cell disorder and slow progression. We further analyzed first 12 proteins in the upregulated and downregulated differentially expressed proteins and incorporated clinicopathologic parameters. Our results showed HBG1, SPI1, HBG2, HBE1, FOXK1, KRT72, SLC13A3, MBD2, SP9, GPLD1, MYH7, and BLOC1S1 were associated with ICP development. ceRNA network analysis showed that MBD2, SPI1, FOXK1, and SLC13A3 were regulated by multiple miRNAs and lncRNAs. Conclusion: ICP was associated with autophagy. The ceRNA network of MBD2, SPI1, FOXK1, and SLC13A3 was involved in ICP progression, and these core proteins might be potential target.
Collapse
|
12
|
Niu Y, Guo Y, Li Y, Shen S, Liang J, Guo W, Dong Z. LncRNA GATA2-AS1 suppresses esophageal squamous cell carcinoma progression via the mir-940/PTPN12 axis. Exp Cell Res 2022; 416:113130. [PMID: 35364057 DOI: 10.1016/j.yexcr.2022.113130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/13/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor worldwide. Long noncoding RNAs (lncRNAs) exhibit a regulatory role in the progression of ESCC. Our research was performed to investigate the potential molecular mechanism of lncRNA GATA2-AS1 in ESCC. METHODS The expression of GATA2-AS1 was identified by qRT-PCR. Cell function assays explored the potential effect of GATA2-AS1 on ESCC progression. The subcellular hierarchical localization method was executed to identify the subcellular localization of GATA2-AS1 in ESCC cells. A prediction website was utilized to discover the relationships among GATA2-AS1, miR-940 and PTPN12. Dual luciferase reporter gene, pull-down assays and RIP assays were executed to verify the binding activity among GATA2-AS1, miR-940 and PTPN12. Xenograft tumor experiments were performed to evaluate ESCC cell growth in vivo. RESULTS The expression of GATA2-AS1 and PTPN12 was reduced, while miR-940 expression was enhanced in ESCC tissues and cell lines. In vivo experiments showed that GATA2-AS1 inhibited the progression of ESCC cells toward malignancy. Bioinformatics analysis, dual luciferase and RIP assays revealed that GATA2-AS1 upregulated PTPN12 expression by competitively targeting miR-940. miR-940 reversed the inhibitory effect of GATA2-AS1 on the biological behavior of ESCC cells. CONCLUSION Our findings suggested that GATA2-AS1, expressed at low levels in ESCC, plays a crucial role in the progression of ESCC by targeting the miR-940/PTPN12 axis and could be a potential drug target to treat ESCC patients.
Collapse
Affiliation(s)
- Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
13
|
Yang C, Chen K. Long Non-Coding RNA in Esophageal Cancer: A Review of Research Progress. Pathol Oncol Res 2022; 28:1610140. [PMID: 35241975 PMCID: PMC8885534 DOI: 10.3389/pore.2022.1610140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
In recent years, there has been significant progress in the diagnosis and treatment of esophageal cancer. However, owing to the lack of early diagnosis strategies and treatment targets, the prognosis of patients with esophageal cancer remains unsatisfactory. There is an urgent need to identify novel biomarkers and treatment targets for esophageal cancer. With the development of genomics, long-chain non-coding RNAs (LncRNAs), which were once considered transcriptional “noise,” are being identified and characterized rapidly in large numbers. Recent research shows that LncRNAs are closely related to a series of steps in tumor development and play an important regulatory role in DNA replication, transcription, and post-transcriptional regulation. The abnormal expression of LncRNAs leads to tumor cell proliferation, migration, invasion, and treatment resistance. This review focuses on the latest progress in research on the abnormal expression and functional mechanisms of LncRNAs in esophageal cancer. Further, it discusses the potential applications of these findings towards achieving an early diagnosis, improving treatment efficacy, and evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Ren DY, Yuan XR, Tu CX, Shen JL, Li YW, Yan AH, Ru Y, Han HY, Yang YM, Liu Y, Li HY. Long Noncoding RNA 00472: A Novel Biomarker in Human Diseases. Front Pharmacol 2021; 12:726908. [PMID: 34987381 PMCID: PMC8722734 DOI: 10.3389/fphar.2021.726908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in human diseases. They control gene expression levels and influence various biological processes through multiple mechanisms. Functional abnormalities in lncRNAs are strongly associated with occurrence and development of various diseases. LINC00472, which is located on chromosome 6q13, is involved in several human diseases, particularly cancers of the breast, lung, liver, osteosarcoma, bladder, colorectal, ovarian, pancreatic and stomach. Importantly, LINC00472 can be used as a biomarker for breast cancer cell sensitivity to chemotherapeutic regimens, including doxorubicin. LINC00472 is regulated by microRNAs and several signaling pathways. However, the significance of LINC00472 in human diseases has not been clearly established. In this review, we elucidate on the significance of LINC00472 in various human diseases, indicating that LINC00472 may be a diagnostic, prognostic as well as therapeutic target for these diseases.
Collapse
Affiliation(s)
- Dan-yang Ren
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Xin-rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-xia Tu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Jian-ling Shen
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yun-wei Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Ai-hua Yan
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yi Ru
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-yun Han
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan-ming Yang
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan Liu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-ying Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Jiao Y, Liu Q, Zhao H, Hu X, Sun J, Liu X. Changes and Prognostic Value of lncRNA CASC9 in Patients with Advanced Colon Cancer after Chemotherapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1858974. [PMID: 34589129 PMCID: PMC8476242 DOI: 10.1155/2021/1858974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Colon cancer (CC) shows a gradual increasing incidence in recent years, and chemotherapy is a frequently adopted treatment for patients with middle or advanced colon cancer (ACC), but it lacks prognostic markers after CC. METHODS The changes of lncRNA CASC9 in 58 patients with CC were determined using a real-time quantitative PCR (qRT-PCR) assay before and after chemotherapy, and the correlation of serum lncRNA CASC9 with efficacy of FOLFOX4 regimen (oxaliplatin + calcium folinate + fluorouracil) was analyzed. The patients were followed up to understand the association of lncRNA CASC9 with overall survival (OS) and progression-free survival (PFS). RESULTS Patients with CC showed notably higher lncRNA CASC9 expression than controls, and lncRNA CASC9 presented an association with the clinical stage of the patients. In addition, lncRNA CASC9 demonstrated a clinical value in predicting efficacy on patients and acted as one independent prognostic factor for PFS in patients with ACC. CONCLUSIONS With increased expression of serum lncRNA CASC9, patients with ACC suffered an unfavorable chemotherapy effect. In addition, serum lncRNA CASC9 is a promising sensitive indicator for prediction of ACC and is related to the clinical efficacy and prognosis of patients.
Collapse
Affiliation(s)
- Yingwei Jiao
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Qiang Liu
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Hongbo Zhao
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Xianzhen Hu
- Four Departments of General Surgery, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Jinlong Sun
- Department of Proctology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Xiaohong Liu
- Department of Traditional Chinese Medicine, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi 721000, China
| |
Collapse
|
16
|
Ray SK, Mukherjee S. LncRNAs as Architects in Cancer Biomarkers with Interface of Epitranscriptomics- Incipient Targets in Cancer Therapy. Curr Cancer Drug Targets 2021; 21:416-427. [PMID: 33413062 DOI: 10.2174/1568009620666210106122421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (LncRNAs) epitomize a class of non-coding regulatory RNAs with more than 200 nucleotides, which are long and situated in the nucleus or cytoplasm and rarely encode proteins. Accruing evidence signposts that lncRNAs act as molecular switches in different cellular activities like differentiation, apoptosis, as well as reprogramming of cellular states by modifying gene expression patterns. The revelation of immense numbers of lncRNA with their wide variety of expression patterns in different kinds of malignancy, tumor explicitness, and their steadiness in circulating body fluids deliver an innovative groundwork for emerging diagnosis and treatments for cancer. Mechanisms associating lncRNAs in carcinogenesis are conquered by deregulation of cellular signaling pathways and altered epitranscriptome along with their expression. Specified these attributes, it becomes clear that the improvement of new tools to identify lncRNAs with higher affectability will be fundamental to allow the identification of the expression pattern of lncRNAs in various kinds of malignant growth and may likewise be utilized to envisage cancer prognosis in addition to the patients' outcome. Improvement of RNA targeting-based therapeutics is delivering incredible prospects to modulate lncRNAs for anti-cancer initiatives. Henceforth, lncRNAs can be used exclusively as possible cancer biomarkers for early diagnosis and anticipation of malignancy, as well as metastasis. In addition to the basic curative targets and along these, lncRNAs hold resilient assurance towards the revelation of innovative diagnostics and therapeutics for malignant growth with the interface of epitranscriptomics information. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis, regulation, and lncRNA-associated epigenetics of cancer along with targeting lncRNAs with potential approaches for impending diagnosis and therapeutic intervention in malignancies.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|