1
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
2
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Ochetto A, Sun D, Siedlecki CA, Xu LC. Nucleotide Messenger Signaling of Staphylococci in Responding to Nitric Oxide - Releasing Biomaterials. ACS Biomater Sci Eng 2023. [PMID: 37155716 DOI: 10.1021/acsbiomaterials.2c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) releasing biomaterials are a promising approach against medical device associated microbial infection. In contrast to the bacteria-killing effects of NO at high concentrations, NO at low concentrations serves as an important signaling molecule to inhibit biofilm formation or disperse mature biofilms by regulating the intracellular nucleotide second messenger signaling network such as cyclic dimeric guanosine monophosphate (c-di-GMP) for many Gram-negative bacterial strains. However, Gram-positive staphylococcal bacteria are the most commonly diagnosed microbial infections on indwelling devices, but much less is known about the nucleotide messengers and their response to NO as well as the mechanism by which NO inhibits biofilm formation. This study investigated the cyclic nucleotide second messengers c-di-GMP, cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic adenosine monophosphate (cAMP) in both Staphylococcus aureus (S. aureus) Newman D2C and Staphylococcus epidermidis (S. epidermidis) RP62A after incubating with S-nitroso-N-acetylpenicillamine (SNAP, NO donor) impregnated polyurethane (PU) films. Results demonstrated that NO release from the polymer films significantly reduced the c-di-GMP levels in S. aureus planktonic and sessile cells, and these bacteria showed inhibited biofilm formation. However, the effect of NO release on c-di-GMP in S. epidermidis was weak, but rather, S. epidermidis showed significant reduction in c-di-AMP levels in response to NO release and also showed reduced biofilm formation. Results strongly suggest that NO regulates the nucleotide second messenger signaling network in different ways for these two bacteria, but for both bacteria, these changes in signaling affect the formations of biofilms. These findings provide cues to understand the mechanism of Staphylococcus biofilm inhibition by NO and suggest novel targets for antibiofilm interventions.
Collapse
Affiliation(s)
- Alyssa Ochetto
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| | | | | | | |
Collapse
|
4
|
Feibel D, Golda J, Held J, Awakowicz P, Schulz-von der Gathen V, Suschek CV, Opländer C, Jansen F. Gas Flow-Dependent Modification of Plasma Chemistry in μAPP Jet-Generated Cold Atmospheric Plasma and Its Impact on Human Skin Fibroblasts. Biomedicines 2023; 11:biomedicines11051242. [PMID: 37238913 DOI: 10.3390/biomedicines11051242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The micro-scaled Atmospheric Pressure Plasma Jet (µAPPJ) is operated with low carrier gas flows (0.25-1.4 slm), preventing excessive dehydration and osmotic effects in the exposed area. A higher yield of reactive oxygen or nitrogen species (ROS or RNS) in the µAAPJ-generated plasmas (CAP) was achieved, due to atmospheric impurities in the working gas. With CAPs generated at different gas flows, we characterized their impact on physical/chemical changes of buffers and on biological parameters of human skin fibroblasts (hsFB). CAP treatments of buffer at 0.25 slm led to increased concentrations of nitrate (~352 µM), hydrogen peroxide (H2O2; ~124 µM) and nitrite (~161 µM). With 1.40 slm, significantly lower concentrations of nitrate (~10 µM) and nitrite (~44 µM) but a strongly increased H2O2 concentration (~1265 µM) was achieved. CAP-induced toxicity of hsFB cultures correlated with the accumulated H2O2 concentrations (20% at 0.25 slm vs. ~49% at 1.40 slm). Adverse biological consequences of CAP exposure could be reversed by exogenously applied catalase. Due to the possibility of being able to influence the plasma chemistry solely by modulating the gas flow, the therapeutic use of the µAPPJ represents an interesting option for clinical use.
Collapse
Affiliation(s)
- Dennis Feibel
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Judith Golda
- Plasma Interface Physics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julian Held
- Experimental Physics II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Christoph V Suschek
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Witten/Herdecke University, 51109 Cologne, Germany
| | - Florian Jansen
- Department of Orthopedics Trauma Surgery, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
6
|
Feibel D, Kwiatkowski A, Opländer C, Grieb G, Windolf J, Suschek CV. Enrichment of Bone Tissue with Antibacterially Effective Amounts of Nitric Oxide Derivatives by Treatment with Dielectric Barrier Discharge Plasmas Optimized for Nitrogen Oxide Chemistry. Biomedicines 2023; 11:biomedicines11020244. [PMID: 36830781 PMCID: PMC9953554 DOI: 10.3390/biomedicines11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.
Collapse
Affiliation(s)
- Dennis Feibel
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Alexander Kwiatkowski
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, 58455 Witten-Herdecke, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Centre, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
7
|
Sharma P, Kumar A, Dey AD. Cellular Therapeutics for Chronic Wound Healing: Future for Regenerative Medicine. Curr Drug Targets 2022; 23:1489-1504. [PMID: 35748548 DOI: 10.2174/138945012309220623144620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 01/25/2023]
Abstract
Chronic wounds are associated with significant morbidity and mortality, which demand long-term effective treatment and represent a tremendous financial strain on the global healthcare systems. Regenerative medicines using stem cells have recently become apparent as a promising approach and are an active zone of investigation. They hold the potential to differentiate into specific types of cells and thus possess self-renewable, regenerative, and immune-modulatory effects. Furthermore, with the rise of technology, various cell therapies and cell types such as Bone Marrow and Adipose-derived Mesenchymal Cell (ADMSC), Endothelial Progenitor Cells (EPCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cell (MSCs), and Pluripotent Stem Cells (PSCs) are studied for their therapeutic impact on reparative processes and tissue regeneration. Cell therapy has proven to have substantial control over enhancing the quality and rate of skin regeneration and wound restoration. The literature review brings to light the mechanics of wound healing, abnormalities resulting in chronic wounds, and the obstacles wound care researchers face, thus exploring the multitude of opportunities for potential improvement. Also, the review is focused on providing particulars on the possible cell-derived therapeutic choices and their associated challenges in healing, in the context of clinical trials, as solutions to these challenges will provide fresh and better future opportunities for improved study design and therefore yield a substantial amount of data for the development of more specialized treatments.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Muro S. Drug Delivery Systems: A Few Examples of Applications, Drug Cargoes, and Administration Routes. Curr Pharm Des 2021; 27:1975-1976. [PMID: 34259130 DOI: 10.2174/138161282717210524161745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Silvia Muro
- Catalan Institution for Research and Advanced Studies & Institute for Bioengineering of Catalonia, Barcelona, Spain
| |
Collapse
|
9
|
Shende P, Sahu P. Synergistic Effect of Nitric Oxide for Wound Healing Using Etherification of Cotton. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Zhang J, Yan Y, Li Y, Shen C, Zhang Y. Topical effect of benzalkonium bromide on wound healing and potential cellular and molecular mechanisms. Int Wound J 2021; 18:566-576. [PMID: 33512783 PMCID: PMC8450784 DOI: 10.1111/iwj.13555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Benzalkonium bromide (BB) has been widely used as a skin antiseptic for wound management. However, BB had proinflammation and reactive oxygen species (ROS) induction effect, making its role in wound healing complex and unclear. A rat full-thickness skin defect wound model was established. The effects of BB, povidone iodine (PVP-I), chlorhexidine gluconate (CHG), and normal saline (NS) on wound healing and infection control were then evaluated based on wound healing rate (WHr) and bacterial killing. The wound tissues were sectioned for histopathological evaluation and nuclear factor E2 related factor 2 (Nrf2) expression determination. The ROS production, Nrf2 activation, and heme oxygenase 1 (HO-1) expression of the HaCat cells and the cytotoxicity treated with BB were further explored. Compared with NS, PVP-I, and CHG, BB showed the best wound infection control efficiency while delayed wound healing with the WHr of 91.42 ± 5.12% at day 20. The wound tissue of the BB group showed many inflammatory cells but few granulation tissue and capillaries and no obvious collagen deposition, resulting in the lowest histopathological scores of 4.17 ± 0.75 for BB group. BB showed higher cytotoxicity on HaCat cells with the lowest IC25, IC50, and IC75 of 1.90, 4.16, and 9.09 g/mL compared with PVP-I and CHG. TUNEL staining evaluated the cytotoxicity of BB on wound tissue, which indicates the high apoptosis index BB group (5.05 ± 1.77). Compared with PVP-I and CHG, BB induced much more cell apoptosis. The results of flow cytometry and fluorescence staining showed that PVP-I, CHG, and BB induced ROS production in a concentration-dependent manner and cells treated with BB had the highest ROS production at the same inhibition concentration. The cells and the wound tissues treated with BB showed highest Nrf2 activation and HO-1 expression than PVP-I and CHG. BB was highly efficient in wound infection control while delayed wound healing. The prolonged and strengthened inflammation and the raised ROS production originating from BB administration may contribute to delayed wound healing.
Collapse
Affiliation(s)
- Jianghe Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chengcheng Shen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268:118932. [PMID: 33400933 DOI: 10.1016/j.lfs.2020.118932] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|