1
|
Sereno D, Oury B, Grijalva MJ. Chagas Disease across the Ages: A Historical View and Commentary on Navigating Future Challenges. Microorganisms 2024; 12:1153. [PMID: 38930535 PMCID: PMC11205636 DOI: 10.3390/microorganisms12061153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Chagas disease, discovered over a century ago, continues to pose a global health challenge, affecting millions mainly in Latin America. This historical review with commentary outlines the disease's discovery, its evolution into a global concern due to migration, and highlights significant advances in diagnostics and treatment strategies. Despite these advancements, the paper discusses ongoing challenges in eradication, including vector control, congenital transmission, the disease's asymptomatic nature, and socioeconomic barriers to effective management. It calls for a multidisciplinary approach, enhanced diagnostics, improved treatment accessibility, and sustained vector control efforts. The review emphasizes the importance of global collaboration and increased funding to reduce Chagas disease's impact.
Collapse
Affiliation(s)
- Denis Sereno
- INTERTRYP, University Montpellier, Centre International de Recherche en Agronomie (CIRAD), Institut de Recherche pour le Développement (IRD), GloInsect: Global Infectiology and Entomology Research Group, 34032 Montpellier, France;
| | - Bruno Oury
- INTERTRYP, University Montpellier, Centre International de Recherche en Agronomie (CIRAD), Institut de Recherche pour le Développement (IRD), GloInsect: Global Infectiology and Entomology Research Group, 34032 Montpellier, France;
| | - Mario J. Grijalva
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA;
| |
Collapse
|
2
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Desale H, Herrera C, Dumonteil E. Trypanosoma cruzi amastigote transcriptome analysis reveals heterogenous populations with replicating and dormant parasites. Microbes Infect 2024; 26:105240. [PMID: 37866547 DOI: 10.1016/j.micinf.2023.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Trypanosoma cruzi is a protozoan parasite causing Chagas disease, with a complex life cycle involving different stages in insect vectors and mammalian hosts. Amastigotes are an intracellular form that replicates in the cytoplasm of host cells, and recent studies suggested that dormant forms may be contributing to parasite persistence, suggesting cellular heterogeneity among amastigotes. We investigated here if a transcriptomic approach could identify some heterogeneity in intracellular amastigotes and identify a dormant population. We used gene expression data derived from bulk RNA-sequencing of T. cruzi infection of human fibroblasts for deconvolution using CDSeq, which allows to simultaneously estimate amastigote cell-type proportions and cell-type-specific expression profiles. Six amastigote subpopulations were identified, confirming intracellular amastigotes heterogeneity, and one population presented characteristics of non-replicative dormant parasites, based on replication markers and TcRAD51 expression. Transcriptomic approaches appear to be powerful to understand T. cruzi cell differentiation and expansion of these studies could provide further insight on the role different cell types in parasite persistence and Chagas disease pathogenesis.
Collapse
Affiliation(s)
- Hans Desale
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Souza-Melo N, de Lima Alcantara C, Vidal JC, Rocha GM, de Souza W. Implications of Flagellar Attachment Zone Proteins TcGP72 and TcFLA-1BP in Morphology, Proliferation, and Intracellular Dynamics in Trypanosoma cruzi. Pathogens 2023; 12:1367. [PMID: 38003831 PMCID: PMC10675206 DOI: 10.3390/pathogens12111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The highly adaptable parasite Trypanosoma cruzi undergoes complex developmental stages to exploit host organisms effectively. Each stage involves the expression of specific proteins and precise intracellular structural organization. These morphological changes depend on key structures that control intracellular components' growth and redistribution. In trypanosomatids, the flagellar attachment zone (FAZ) connects the flagellum to the cell body and plays a pivotal role in cell expansion and structural rearrangement. While FAZ proteins are well-studied in other trypanosomatids, there is limited knowledge about specific components, organization, and function in T. cruzi. This study employed the CRISPR/Cas9 system to label endogenous genes and conduct deletions to characterize FAZ-specific proteins during epimastigote cell division and metacyclogenesis. In T. cruzi, these proteins exhibited distinct organization compared to their counterparts in T. brucei. TcGP72 is anchored to the flagellar membrane, while TcFLA-1BP is anchored to the membrane lining the cell body. We identified unique features in the organization and function of the FAZ in T. cruzi compared to other trypanosomatids. Deleting these proteins had varying effects on intracellular structures, cytokinesis, and metacyclogenesis. This study reveals specific variations that directly impact the success of cell division and differentiation of this parasite.
Collapse
Affiliation(s)
- Normanda Souza-Melo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-590, Brazil; (C.d.L.A.); (J.C.V.); (G.M.R.)
| | - Carolina de Lima Alcantara
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-590, Brazil; (C.d.L.A.); (J.C.V.); (G.M.R.)
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-590, Brazil; (C.d.L.A.); (J.C.V.); (G.M.R.)
| | - Gustavo Miranda Rocha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-590, Brazil; (C.d.L.A.); (J.C.V.); (G.M.R.)
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21491-590, Brazil; (C.d.L.A.); (J.C.V.); (G.M.R.)
- Centro de Estudos Biomédicos-CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas-UEA, Manaus 69065-000, Brazil
| |
Collapse
|
5
|
Sandes JM, de Figueiredo RCBQ. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front Cell Infect Microbiol 2022; 12:1057774. [PMID: 36439218 PMCID: PMC9684732 DOI: 10.3389/fcimb.2022.1057774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells forms an intricate membranous network that serves as the main processing facility for folding and assembling of secreted and membrane proteins. The ER is a highly dynamic organelle that interacts with other intracellular structures, as well as endosymbiotic pathogenic and non-pathogenic microorganisms. A strict ER quality control (ERQC) must work to ensure that proteins entering the ER are folded and processed correctly. Unfolded or misfolded proteins are usually identified, selected, and addressed to Endoplasmic Reticulum-Associated Degradation (ERAD) complex. Conversely, when there is a large demand for secreted proteins or ER imbalance, the accumulation of unfolded or misfolded proteins activates the Unfold Protein Response (UPR) to restore the ER homeostasis or, in the case of persistent ER stress, induces the cell death. Pathogenic trypanosomatids, such as Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp are the etiological agents of important neglected diseases. These protozoans have a complex life cycle alternating between vertebrate and invertebrate hosts. The ER of trypanosomatids, like those found in higher eukaryotes, is also specialized for secretion, and depends on the ERAD and non-canonical UPR to deal with the ER stress. Here, we reviewed the basic aspects of ER biology, organization, and quality control in trypanosomatids. We also focused on the unusual way by which T. cruzi, T. brucei, and Leishmania spp. respond to ER stress, emphasizing how these parasites' ER-unrevealed roads might be an attractive target for chemotherapy.
Collapse
Affiliation(s)
- Jana Messias Sandes
- Laboratório de Biologia Celular e Molecular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Keizo Assami, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
6
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
7
|
Silver Nanoparticles Containing Fucoidan Synthesized by Green Method Have Anti- Trypanosoma cruzi Activity. NANOMATERIALS 2022; 12:nano12122059. [PMID: 35745396 PMCID: PMC9231105 DOI: 10.3390/nano12122059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The brown seaweed Spatoglossum schröederi synthesizes three bioactive fucoidans, the most abundant of which is fucan A. This fucoidan was extracted and its identity was confirmed by chemical analysis, Fourier-transform infrared spectroscopy (FTIR), and agarose gel electrophoresis. Thereafter, silver nanoparticles containing fucan A (AgFuc) were produced using an environmentally friendly synthesis method. AgFuc synthesis was analyzed via UV-vis spectroscopy and FTIR, which confirmed the presence of both silver and fucan A in the AgFuc product. Dynamic light scattering (DLS), X-ray diffraction, scanning electron microscopy, and atomic force microscopy revealed that the AgFuc particles were ~180.0 nm in size and spherical in shape. DLS further demonstrated that AgFuc was stable for five months. Coupled plasma optical emission spectrometry showed that the AgFuc particles contained 5% silver and 95% sugar. AgFuc was shown to be more effective in inhibiting the ability of parasites to reduce MTT than fucan A or silver, regardless of treatment time. In addition, AgFuc induced the death of ~60% of parasites by necrosis and ~17% by apoptosis. Therefore, AgFuc induces damage to the parasites' mitochondria, which suggests that it is an anti-Trypanosoma cruzi agent. This is the first study to analyze silver nanoparticles containing fucan as an anti-Trypanosoma cruzi agent. Our data indicate that AgFuc nanoparticles have potential therapeutic applications, which should be determined via preclinical in vitro and in vivo studies.
Collapse
|
8
|
Vidal JC, De Souza W. 3D FIB-SEM structural insights into the architecture of sub-pellicular microtubules of Trypanosoma cruzi epimastigotes. Biol Cell 2022; 114:203-210. [PMID: 35475518 DOI: 10.1111/boc.202100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION Trypanosomatidae, which includes eukaryotic species agents of diseases like leishmaniasis, sleeping sickness, and Chagas disease, have special structures and organelles not found in mammalian cells. They present a layer of microtubules, known as subpellicular microtubules (SPMT), located underneath the plasma membrane and responsible for preserving cell morphology, cell polarity, the position of single copy organelles, and morphological changes that occur throughout the protozoan life cycle. Even though a lot of knowledge about the SPMT is available, we still do not know exactly how each microtubule in the system is organized in three dimensions. Here, we use focused ion beam scanning electron microscopy (FIB-SEM) to analyze the tridimensional organization of epimastigotes SPMT. RESULTS The high-resolution 3D analyses revealed that certain microtubules of the SPMT end more prematurely than the neighboring ones. CONCLUSIONS These microtubules could (1) be shorter or (2) have the same length as the neighboring ones, assuming that those end up earlier at their other end, might be treadmilling/catastrophe events that have not yet been described in trypanosomatids.
Collapse
Affiliation(s)
- Juliana C Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
11
|
Souza WD. Development in the Chemotherapy of Infectious Diseases caused by Intracellular Pathogenic Protozoa: Trypanosoma and Leishmania. Curr Pharm Des 2021; 27:1649. [PMID: 34112066 DOI: 10.2174/138161282714210429112726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|