1
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
2
|
Sun Z, Gao Q, Wei Y, Zhou Z, Chen Y, Xu C, Gao J, Liu D. Activated P2X receptors can up-regulate the expressions of inflammation-related genes via NF-κB pathway in spotted sea bass ( Lateolabrax maculatus). Front Immunol 2023; 14:1181067. [PMID: 37215129 PMCID: PMC10193947 DOI: 10.3389/fimmu.2023.1181067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
P2X receptors, including seven subtypes, i.e., P2X1-7, are the ligand-gated ion channels activated by the extracellular ATP playing the critical roles in inflammation and immune response. Even though the immune functions of P2X receptors have been characterized extensively in mammals, their functions in fish remain largely unknown. In this study, four P2X receptor homologues were characterized in spotted sea bass (Lateolabrax maculatus), which were named LmP2X2, LmP2X4, LmP2X5, and LmP2X7. Their tissue distributions and expression patterns were then investigated by real-time quantitative PCR (qPCR). Furthermore, their functions in regulating the expressions of inflammation-associated genes and possible signaling pathway were examined by qPCR and luciferase assay. The results showed that they share similar topological structures, conserved genomic organization, and gene synteny with their counterparts in other species previously investigated. And the four P2X receptors were expressed constitutively in the tested tissues. In addition, the expression of each of the four receptor genes was significantly induced by stimulation of Edwardsiella tarda and/or pathogen-associated molecular patterns (PAMPs) in vivo. Also, in primary head kidney leukocytes of spotted sea bass, LmP2X2 and LmP2X5 were induced by using PAMPs and/or ATP. Notably, the expressions of CCL2, IL-8, and TNF-α recognized as the pro-inflammatory cytokines, and of the four apoptosis-related genes, i.e., caspase3, caspase6, caspase7, and P53, were differentially upregulated in the HEK 293T cells with over-expressed LmP2X2 and/or LmP2X7 following ATP stimulation. Also, the over-expression of LmP2X4 can upregulate the expressions of IL-8, caspase6, caspase7, and P53, and LmP2X5 upregulates of IL-8, TNF-α, caspase7, and P53. Then in the present study it was demonstrated that the activation of any one of the four receptors significantly upregulated the activity of NF-κB promoter, suggesting that the activated LmP2Xs may regulate the expressions of pro-inflammatory cytokines via the NF-κB pathway. Taken together, the four P2X receptors were identified firstly from fish species in Perciformes, and they participate in innate immune response of spotted sea bass possibly by regulating the expressions of the inflammation-related genes. Our study provides the new evidences for the P2X receptors' involvement in fish immunity.
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Zhou
- SinoNorway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiaqi Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Stefani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giada Badiale
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| |
Collapse
|