1
|
Ho TH, Hien TD, Wilhelmsen Ø, Trinh TT. Thermophysical properties of polyethylene glycol oligomers via molecular dynamics simulations. RSC Adv 2024; 14:28125-28137. [PMID: 39228756 PMCID: PMC11369976 DOI: 10.1039/d4ra04898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Polyethylene glycol (PEG) is a versatile chemical with numerous applications in various fields, including biomedical research, pharmaceutical development, and industrial manufacturing. Molecular dynamics (MD) is a powerful tool for investigating the thermophysical properties of PEG molecules. In this study, we employ the General AMBER force field (GAFF) to perform MD simulations on various PEG oligomers, focusing on the calculation of density, self-diffusion coefficients, shear viscosity, and thermal conductivity. The results demonstrate excellent agreement with experimental data, where GAFF outperforms other force fields in reproducing thermophysical properties. For a PEG tetramer, the GAFF force field reproduces experimental data within 5% for the density, 5% for the diffusion coefficient, and 10% for the viscosity. In comparison, the OPLS force field displays significant deviations exceeding 80% for the diffusion coefficient and 400% for the viscosity. A detailed analysis of partial charge distributions and dihedral angles reveals that they significantly impact the structural behavior of PEG oligomers. The findings highlight the GAFF force field as one of the most accurate and reliable options for simulating systems with PEGs.
Collapse
Affiliation(s)
- Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Tong Duy Hien
- Faculty of Engineering, Vietnamese-German University (VGU) Thu Dau Mot City Binh Duong Province 75000 Vietnam
| | - Øivind Wilhelmsen
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| | - Thuat T Trinh
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
2
|
Hoffmann MM, Gonzalez AA, Huynh MT, Miller KK, Gutmann T, Buntkowsky G. Densities, Viscosities, and Self-Diffusion Coefficients of Octan-1-ol and Related Ether-Alcohols. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:2688-2699. [PMID: 39139987 PMCID: PMC11317982 DOI: 10.1021/acs.jced.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Density, viscosity, and self-diffusion coefficients are reported for octan-1-ol and the related ether-alcohols 2-pentoxy-ethan-1-ol, 3-butoxypropan-1-ol, 4-propoxybutan-1-ol, 5-ethoxypentan-1-ol, and 6-methoxyhexan-1-ol covering temperature ranges from 298.15 to 359.15 K. These new data reveal structure-property relationships affected by the presence and the position of the ether moiety in the molecular structure of the ether-alcohols. Compared to octan-1-ol, the presence of the ether moiety causes an increase in intermolecular hydrogen bonding interactions, resulting in higher densities. The increase in density is less pronounced for those ether-octanols that engage in intramolecular hydrogen bonding. As for the effects of the ether moiety on the dynamics, these are generally faster for the ether-alcohols compared to octan-1-ol, suggesting that hydrogen bonding between ether oxygen and hydroxy hydrogen is weaker compared to hydrogen bonding between two hydroxy groups. The activation energies obtained from an Arrhenius analysis are higher for translational motion than for momentum transfer for all alcohols. There are additional finer details across the ether alcohols for these activation barriers. These differences cancel out for the mathematical product of self-diffusion coefficient and viscosity (Dη). The effect of water impurities on the studied properties was also investigated and found to lead to small increases in densities for all alcohols. Viscosities decrease for octan-1-ol and 2-pentoxyethan-1-ol but increase for the other ether-alcohols that can engage in intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Anthony A. Gonzalez
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Mandy T. Huynh
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Kashane K. Miller
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Torsten Gutmann
- Institute
of Physical Chemistry, Technical University
Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute
of Physical Chemistry, Technical University
Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Hoffmann MM, Too MD, Paddock NA, Horstmann R, Kloth S, Vogel M, Buntkowsky G. Molecular Dynamics Study of the Green Solvent Polyethylene Glycol with Water Impurities. Molecules 2024; 29:2070. [PMID: 38731561 PMCID: PMC11085543 DOI: 10.3390/molecules29092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Matthew D. Too
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Nathaniel A. Paddock
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Robin Horstmann
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Haro Mares NB, Döller SC, Wissel T, Hoffmann M, Vogel M, Buntkowsky G. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry. Molecules 2024; 29:1669. [PMID: 38611950 PMCID: PMC11013127 DOI: 10.3390/molecules29071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores.
Collapse
Affiliation(s)
- Nadia B. Haro Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Sonja C. Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, D-64289 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| |
Collapse
|
5
|
Yang J, Wei S, Zhao J, Zeng W, Shao H, Ma X. An environmentally benign protocol for the synthesis of sugar 1,2-orthoesters in poly(ethylene glycol) dimethyl ether (DMPE). Carbohydr Res 2023; 534:108902. [PMID: 38006705 DOI: 10.1016/j.carres.2023.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 11/27/2023]
Abstract
An environmentally benign procedure has been developed for the synthesis of sugar orthoesters using anhydrous sodium acetate in poly (ethylene glycol)dimethyl ether (DMPE). Various sugar orthoesers were prepared without using volatile organic solvent and quaternary ammonium salt. The sugar orthoesters were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Jian Yang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanqiao Wei
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinzhong Zhao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei Zeng
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Hoffmann MM, Too MD, Paddock NA, Horstmann R, Kloth S, Vogel M, Buntkowsky G. On the Behavior of the Ethylene Glycol Components of Polydisperse Polyethylene Glycol PEG200. J Phys Chem B 2023; 127:1178-1196. [PMID: 36700884 PMCID: PMC9923754 DOI: 10.1021/acs.jpcb.2c06773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular dynamics (MD) simulations are reported for [polyethylene glycol (PEG)200], a polydisperse mixture of ethylene glycol oligomers with an average molar weight of 200 g·mol-1. As a first step, available force fields for describing ethylene glycol oligomers were tested on how accurately they reproduced experimental properties. They were found to all fall short on either reproducing density, a static property, or the self-diffusion coefficient, a dynamic property. Discrepancies with the experimental data increased with the increasing size of the tested ethylene glycol oligomer. From the available force fields, the optimized potential for liquid simulation (OPLS) force field was used to further investigate which adjustments to the force field would improve the agreement of simulated physical properties with experimental ones. Two parameters were identified and adjusted, the (HO)-C-C-O proper dihedral potential and the polarity of the hydroxy group. The parameter adjustments depended on the size of the ethylene glycol oligomer. Next, PEG200 was simulated with the OPLS force field with and without modifications to inspect their effects on the simulation results. The modifications to the OPLS force field significantly decreased hydrogen bonding overall and increased the propensity of intramolecular hydrogen bond formation at the cost of intermolecular hydrogen bond formation. Moreover, some of the tri- and more so tetraethylene glycol formed intramolecular hydrogen bonds between the hydroxy end groups while still maintaining strong intramolecular interactions with the ether oxygen atoms. These observations allowed the interpretation of the obtained RDFs as well as structural properties such as the average end-to-end distances and the average radii of gyration. The MD simulations with and without the modifications showed no evidence of preferential association of like-oligomers to form clusters nor any evidence of long-range ordering such as a side-by-side stacking of ethylene glycol oligomers. Instead, the simulation results support the picture of PEG200 being a random mixture of its ethylene glycol oligomer components. Finally, additional MD simulations of a binary mixture of tri-and hexaethylene glycol with the same average molar weight as PEG200 revealed very similar structural and physical properties as for PEG200.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department
of Chemistry and Biochemistry, State University
of New York College at Brockport, Brockport, New York14420, United States,. Phone: + 1(585) 395-5587. Fax: + 1(585) 395-5805
| | - Matthew D. Too
- Department
of Chemistry and Biochemistry, State University
of New York College at Brockport, Brockport, New York14420, United States
| | - Nathaniel A. Paddock
- Department
of Chemistry and Biochemistry, State University
of New York College at Brockport, Brockport, New York14420, United States
| | - Robin Horstmann
- Institute
of Condensed Matter Physics, Technical University
Darmstadt, Hochschulstraße
6, 64289Darmstadt, Germany
| | - Sebastian Kloth
- Institute
of Condensed Matter Physics, Technical University
Darmstadt, Hochschulstraße
6, 64289Darmstadt, Germany
| | - Michael Vogel
- Institute
of Condensed Matter Physics, Technical University
Darmstadt, Hochschulstraße
6, 64289Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute
of Physical Chemistry, Technical University
Darmstadt, Alarich-Weiss-Straße
8, D-64287Darmstadt, Germany,. Phone: + 49 6151 16-21116. Fax: + 49 6151 16-21119
| |
Collapse
|
7
|
Mathavan S, Yamajala RBRD. Potassium dihydrogen phosphate‐ catalyzed synthesis of benzylpyrazolyl coumarin and pyrano [2,3‐
c
] pyrazole derivatives
via
cascade – one‐pot – multicomponent reaction. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sivagami Mathavan
- Department of Chemistry School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram Thanjavur India
| | - Rajesh B. R. D. Yamajala
- Department of Chemistry School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram Thanjavur India
| |
Collapse
|
8
|
|
9
|
Efficient synthesis of decahydroacridine-1,8-diones and polyhydroquinolines using the step-wise method. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|