1
|
Kapidou E, Litinas KE. An Overview of the Synthesis of 3,4-Fused Pyrrolocoumarins of Biological Interest. Molecules 2024; 29:2748. [PMID: 38930816 PMCID: PMC11206682 DOI: 10.3390/molecules29122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring is formed from coumarin derivatives, such as aminocoumarins or other coumarins. In the other approach, the pyranone moiety is built from an existing pyrrole derivative or through the simultaneous formation of coumarin and pyrrole frameworks. The above syntheses are achieved via 1,3-dipolar cycloaddition reactions, Michael reaction, aza-Claisen rearrangement reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions. Pyrrolocoumarins present cytotoxic, antifungal, antibacterial, α-glucosidase inhibition, antioxidant, lipoxygenase (LOX) inhibition, and fluorescent activities, as well as benzodiazepine receptor ability.
Collapse
Affiliation(s)
| | - Konstantinos E. Litinas
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Mallah D, Mirjalili BBF, Bamoniri A. Carbon nanofiber/taurine-catalyzed synthesis of coumarin and 1,2,4,5-tetra-substituted imidazole derivatives under metal-free conditions. Sci Rep 2024; 14:10677. [PMID: 38724578 PMCID: PMC11082250 DOI: 10.1038/s41598-024-61249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The main subject of this research is the development of a suitable, efficient, and biocompatible carbon nanofiber-based catalytic system for the synthesis of coumarin and 1,2,4,5-tetra-substituted imidazoles. Brønsted acid carbon nanofiber/taurine catalyst was made during three steps: acid treatment, acylation, and then amination. The basic principles and general advantages of the synthesis method are elaborated. The acidity of the prepared nano-catalyst was investigated using the Hammet acidity technique and UV-Vis spectroscopy, and the H0 value for 5 × 10-2 mg/mL of CNF/T in 0.3 mM 4-nitroaniline solution was determined to be 1.47. The structure of the catalyst was successfully characterized using FT-IR, TGA, FESEM, XRD, TEM, EDX, EDS-MAP, BET, and XPS techniques. Here, we report the ability of carbon nanofiber/taurine as a Brønsted acid catalyst for the synthesis of coumarins and 1,2,4,5-tetra-substituted imidazole through a metal-free, cost-effective, and biocompatible multicomponent route. Among the advantages of this protocol are reaction time, excellent efficiency, reusability, and high activity of the catalyst.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
3
|
Kim S, Han YT. An Efficient One-Pot Synthesis of Pyrido[2,3- c]coumarins via Serial Catalysis and Its Application in Concise Formal Synthesis of Santiagonamine. J Org Chem 2023; 88:15473-15477. [PMID: 37852238 DOI: 10.1021/acs.joc.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Versatile and high-yielding one-pot synthesis of polysubstituted pyrido[2,3-c]coumarins from N-Boc-N-coumarinyl propargylamine derivatives was achieved via serial catalysis using AgSbF6. Using this approach, the concise formal synthesis of santiagonamine was successfully accomplished. This simple and versatile method could be used to increase the potential of the pyrido[2,3-c]coumarin scaffold for diverse synthetic and biological applications.
Collapse
Affiliation(s)
- San Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Chenan, Chungnam 31116, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Chenan, Chungnam 31116, Republic of Korea
| |
Collapse
|
4
|
Ratre P, Kulkarni S, Das S, Liang C, Mishra PK, Thareja S. Medicinal chemistry aspects and synthetic strategies of coumarin as aromatase inhibitors: an overview. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:41. [PMID: 36471176 DOI: 10.1007/s12032-022-01916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure-activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sweety Das
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710 021, People's Republic of China
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
5
|
Pasuparthy SD, Maiti B. [CMMIM][BF 4 -] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d]pyrido[1,2- a]pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS OMEGA 2022; 7:39147-39158. [PMID: 36340130 PMCID: PMC9631728 DOI: 10.1021/acsomega.2c05015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed a novel synthetic route for the synthesis of chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one derivatives 8a-q using an acid ionic liquid [CMMIM][BF4 -] 4 via one-pot, three-component synthesis in aqueous ethanol at room temperature. A series of 17 derivatives have been successfully prepared with up to 93% yield. All the synthesized derivatives were well characterized using 1H-NMR, 13C-NMR, and FT-IR spectral techniques. Additionally, the photophysical properties of 12 selected derivatives including molar extinction coefficient (ε), Stokes shift (Δυ̅), and quantum yield (Φ) varying from 0.52095 × 104 to 0.93248 × 104, 4216 to 4668 cm-1, and 0.0088 to 0.0459, respectively, have been determined. Furthermore, the experimental data are supported by density functional theory (DFT) and time-dependent DFT calculations. Theoretical investigations showed a trend similar to experimental results.
Collapse
|
6
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
7
|
Muralidhar B, Victoria GG, Kumar KS, Sabbsani RR. Copper‐mediated relay strategy using chlorination/oxidation: An effective synthesis of functionalized coumarin derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Baitinti Muralidhar
- Vellore Institute of Technology: VIT University school of advanced sciences INDIA
| | | | | | | |
Collapse
|
8
|
Balewski Ł, Szulta S, Jalińska A, Kornicka A. A Mini-Review: Recent Advances in Coumarin-Metal Complexes With Biological Properties. Front Chem 2021; 9:781779. [PMID: 34926402 PMCID: PMC8671816 DOI: 10.3389/fchem.2021.781779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The coumarin nucleus is a recurring motif in both natural and synthetic compounds that exhibit a broad spectrum of biological properties including anticoagulant, anti-inflammatory, antioxidant, antiviral, antimicrobial and anticancer agents as well as enzyme inhibitors. On the other hand, it has been reported that the incorporation of a metal ion into coumarin derivatives can increase the activity of such complexes compared to coumarin-based ligands. Accordingly, some of them have been found to display promising antioxidant, antitumor or antibacterial activities. This mini-review briefly summarizes the recent development of coumarin-metal complexes with proven biological properties. The attention is also paid to agents for which practical applications in the detection of biologically important species may be found.
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Pratap Reddy Gajulapalli V, Kumarswamyreddy N, Lokesh K, Kesavan V. Enantioselective Synthesis of 3‐Acetyl Coumarin Substituted 3‐Hydroxy Oxindoles and Pyranocoumarin Fused Spirooxindoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- V. Pratap Reddy Gajulapalli
- Chemical Biology Laboratory, Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| | - Nandarapu Kumarswamyreddy
- Chemical Biology Laboratory, Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
- Department of Chemistry Indian Institute of Technology Tirupati Tirupati 517506 Andhra Pradesh India
| | - Kanduru Lokesh
- Chemical Biology Laboratory, Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory, Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
10
|
Irgashev RA, Steparuk AS, Rusinov GL. Synthesis of 6H,7H-chromeno[3′,4′:4,5]thieno[3,2-b]indol-6-ones using the Fischer indolization reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chopra PKPG, Lambat TL, Mahmood SH, Chaudhary RG, Banerjee S. Sulfamic Acid as Versatile Green Catalyst Used For Synthetic Organic Chemistry: A Comprehensive Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202101635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Trimurti L. Lambat
- Department of Chemistry Manoharbhai Patel College of Arts Commerce & Science Deori- Gondia 441901 Maharashtra India
| | - Sami H. Mahmood
- Department of Physics The University of Jordan Amman 11942 Jordan & Department of Physics and Astronomy Michigan State University East Lansing MI 48824 USA
| | - Ratiram G. Chaudhary
- P.G. Department of Chemistry S. K. Porwal College Kamptee 441001 Maharashtra India
| | - Subhash Banerjee
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| |
Collapse
|
12
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part II: Five-Membered Aromatic Rings with Multi Heteroatoms. Molecules 2021; 26:molecules26113409. [PMID: 34199910 PMCID: PMC8200119 DOI: 10.3390/molecules26113409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Coumarins are natural heterocycles that widely contribute to the design of various biologically active compounds. Fusing different aromatic heterocycles with coumarin at its 3,4-position is one of the interesting approaches to generating novel molecules with various biological activities. During our continuing interest in assembling information about fused five-membered aromatic heterocycles, and after having presented mono-hetero-atomic five-membered aromatic heterocycles in Part I. The current review Part II is intended to present an overview of the different synthetic routes to coumarin (benzopyrone)-fused five-membered aromatic heterocycles with multi-heteroatoms built on the pyrone ring, covering the literature from 1945 to 2021.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt;
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57078 Metz, France
- Correspondence: ; Tel.: +33-0372-749-200; Fax: +33-0372-749-187
| |
Collapse
|