1
|
Lasek P, Kosikowska U, Kołodziej P, Kubiak-Tomaszewska G, Krzyżanowska N, Szostek T, Struga M, Feldo M, Bogucka-Kocka A, Wujec M. New Thiosemicarbazide Derivatives with Multidirectional Biological Action. Molecules 2024; 29:1529. [PMID: 38611813 PMCID: PMC11013662 DOI: 10.3390/molecules29071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Over the years, several new medicinal substances have been introduced for the treatment of diseases caused by bacteria and parasites. Unfortunately, due to the production of numerous defense mechanisms by microorganisms and parasites, they still pose a serious threat to humanity around the world. Therefore, laboratories all over the world are still working on finding new, effective methods of pharmacotherapy. This research work aimed to synthesize new compounds derived from 3-trifluoromethylbenzoic acid hydrazide and to determine their biological activity. The first stage of the research was to obtain seven new compounds, including six linear compounds and one derivative of 1,2,4-triazole. The PASS software was used to estimate the potential probabilities of biological activity of the newly obtained derivatives. Next, studies were carried out to determine the nematocidal potential of the compounds with the use of nematodes of the genus Rhabditis sp. and antibacterial activity using the ACCT standard strains. To determine the lack of cytotoxicity, tests were performed on two cell lines. Additionally, an antioxidant activity test was performed due to the importance of scavenging free radicals in infections with pathogenic microorganisms. The conducted research proved the anthelmintic and antibacterial potential of the newly obtained compounds. The most effective were two compounds with a 3-chlorophenyl substituent, both linear and cyclic derivatives. They demonstrated higher efficacy than the drugs used in treatment.
Collapse
Affiliation(s)
- Patryk Lasek
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland;
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Natalia Krzyżanowska
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Tomasz Szostek
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Janowska S, Khylyuk D, Andrzejczuk S, Wujec M. Design, Synthesis, Antibacterial Evaluations and In Silico Studies of Novel Thiosemicarbazides and 1,3,4-Thiadiazoles. Molecules 2022; 27:molecules27103161. [PMID: 35630638 PMCID: PMC9147709 DOI: 10.3390/molecules27103161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of drug-resistant bacterial strains continues to be one of the major challenges of medicine. For this reason, the importance of searching for novel structures of antibacterial drugs chemically different from the currently known antibiotics is still of great importance. In this study, we synthesized the thiosemicarbazide and 1,3,4-thiadiazole derivatives and tested them for antibacterial activity. In in vitro tests, we examined the activity of the synthesized substances against Gram-positive and Gram-negative bacteria strains. While all 1,3,4-thiadiazoles tested lacked significant activity, the antimicrobial response of the thiosemicarbazides was moderate and it was also dependent on the type and position of the substituent on the phenyl ring. The highest activity towards all Gram-positive bacteria strains was shown by all three linear compounds containing the trifluoromethylphenyl group in the structure. The MIC (minimum inhibitory concentration) values were in the range of 3.9–250 µg/mL. Additionally, we try to explain the mechanism of the antibacterial activity of the tested compounds using the molecular docking to DNA gyrase and topoisomerase IV, following previous reports on the molecular basis of the activity of thiosemicarbazides. Docking simulations allow the purposing dual mechanism of the antibacterial activity of the synthesized compounds through inhibition of topoisomerase IV DNA gyrase with the moderate prevalence of the topoisomerase pathway.
Collapse
Affiliation(s)
- Sara Janowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland; (S.J.); (D.K.)
| | - Dmytro Khylyuk
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland; (S.J.); (D.K.)
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland; (S.J.); (D.K.)
- Correspondence:
| |
Collapse
|