1
|
Çalışkan E, Yüksel F, Çapan İ, Tekin S, Bouzidi R, Qaoud MT, Biryan F, Koran K, Sandal S, Orhan Görgülü A. Phosphazene Tripeptide Conjugates: Design, Synthesis, In Vitro Cytotoxicity and Genotoxicity, Molecular Interactions in Binding Pockets on Human Breast and Colon Cancer Cell Lines. ChemMedChem 2025; 20:e202400570. [PMID: 39450534 DOI: 10.1002/cmdc.202400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
The biological activity of both cyclophosphazenes and peptides makes these compounds important for new studies in medicinal chemistry. For this purpose, five different phosphazene-peptide conjugates synthesized from dichlorocyclotriphosphazene and tyrosine-containing tripeptides. The synthesized compounds were evaluated for their in vitro cytotoxic activities against human breast (MCF-7) and colon (Caco-2) cancer cell lines using MTT assay. The derivatives induced cell death through DNA damage, with notable effects in Caco-2 cell lines. Specifically, DTVV, DTVG, and DTVA were cytotoxic at 50 and 100 μM, while DTVP and DTVM were effective at 25, 50, and 100 μM. DTVM outperformed Tamoxifen at 50 μM in the MCF-7 cell line. DNA damage studies of the compounds were performed using the comet assay method, evaluating tail length, tail density, olive tail moment, head length, and head density parameters. The findings indicated that cell death occurred via a DNA damage mechanism. The molecular intricacies of DTVA, DTVG, DTVM, DTVP and DTVV within the VEGFR2 kinase domain (3VHE) and Cyclophilin_CeCYP16-Like Domain (2HQ6) binding pockets and various interactions, docking scores and potential activities of these derivatives were investigated. The differences in docking scores and interaction profiles highlight the potential efficacy and specificity of these compounds in targeting breast and colon cancer cells. These findings highlight the potential of phosphazene-peptide derivatives as therapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Eray Çalışkan
- Department of Chemistry, Faculty of Science, Bingöl University, Bingöl, Türkiye
| | - Furkan Yüksel
- Department of Physiology, Faculty of Veterinary Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Reda Bouzidi
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, Nicosia, Türkiye
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, Nicosia, Türkiye
| | - Fatih Biryan
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | - Kenan Koran
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Ahmet Orhan Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| |
Collapse
|
2
|
Sahoo S, Deka N, Panday R, Boomishankar R. Metal-free small molecule-based piezoelectric energy harvesters. Chem Commun (Camb) 2024; 60:11655-11672. [PMID: 39297734 DOI: 10.1039/d4cc03939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Organic and metal-free molecules with piezoelectric and ferroelectric properties have gained wide interest for their applications in the domain of mechanical energy harvesting due to their desirable properties such as light weight, thermal stability, mechanical flexibility, feasibility to achieve high Curie temperatures, and ease of synthesis. However, the understanding and design of these materials for piezoelectric energy harvesting applications is still in its early stages. This review paper presents a comprehensive overview of the fundamental characterization of piezoelectricity for a range of organic ferro- and piezoelectric materials and their composites. It also discusses the limitations of traditional piezoelectric materials and highlights the advantages of organic materials in this area in the introduction part. In addition, the paper provides a detailed description of peptide-based and other biomolecular piezoelectric materials as a bio-friendly alternative to current materials. This perspective aims to guide researchers in designing functional organic materials and composites for practical mechanical energy harvesting applications and to highlight current limitations and future perspectives in this emerging area of research.
Collapse
Affiliation(s)
- Supriya Sahoo
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| | - Nilotpal Deka
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| |
Collapse
|
3
|
Deswal S, Panday R, Naphade DR, Cazade PA, Guerin S, Zaręba JK, Steiner A, Ogale S, Anthopoulos TD, Boomishankar R. Design and Piezoelectric Energy Harvesting Properties of a Ferroelectric Cyclophosphazene Salt. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300792. [PMID: 37485599 DOI: 10.1002/smll.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.
Collapse
Affiliation(s)
- Swati Deswal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jan K Zaręba
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50- 370, Poland
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
4
|
Zhang X, Long C, Zhu X, Zhang X, Li J, Luo J, Li J, Gao Q. Preparation of Strong and Thermally Conductive, Spider Silk-Inspired, Soybean Protein-Based Adhesive for Thermally Conductive Wood-Based Composites. ACS NANO 2023; 17:18850-18863. [PMID: 37781925 DOI: 10.1021/acsnano.3c03782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The development of formaldehyde-free functional wood composite materials through the preparation of strong and multifunctional soybean protein adhesives to replace formaldehyde-based resins is an important research area. However, ensuring the bonding performance of soybean protein adhesive while simultaneously developing thermally conductive adhesive and its corresponding wood composites is challenging. Taking inspiration from the microphase separation structure of spider silk, boron nitride (BN) and soy protein isolate (SPI) were mixed by ball milling to obtain a BN@SPI matrix and combined with the self-synthesized hyperbranched reactive substrates as amorphous region reinforcer and cross-linker triglycidylamine to prepare strong and thermally conductive soybean protein adhesive with cross-linked microphase separation structure. These findings indicate that mechanical ball milling can be employed to strip BN followed by combination with SPI, resulting in a tight bonded interface connection. Subsequently, the adhesive's dry and wet shear strengths increased by 14.3% and 90.5% to 1.83 and 1.05 MPa, respectively. The resultant adhesive also possesses a good thermal conductivity (0.363 W/mK). Impressively, because hot-pressing helps the resultant adhesive to establish a thermal conduction pathway, the thermal conductivity of the resulting wood-based composite is 10 times higher than that of the SPI adhesive, which shows a thermal conductivity similar to that of ceramic tile and has excellent potential for developing biothermal conductivity materials, geothermal floors, and energy storage materials. Moreover, the adhesive possessed effective flame retardancy (limit oxygen index = 36.5%) and mildew resistance (>50 days). This bionic design represents an efficient technique for developing multifunctional biomass adhesives and composites.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Chun Long
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xiaobo Zhu
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jing Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingchao Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Syntheses of tetrachloro and tetraamino(2-furanylmethyl)spiro(N/N) cyclotriphosphazenes: Chemical, structural elucidation, antiproliferative and antimigratory activity studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Beytur A, Tekin Ç, Çalışkan E, Tekin S, Koran K, Orhan Görgülü A, Sandal S. Hexa-substituted cyclotriphosphazene derivatives containing hetero-ring chalcones: Synthesis, in vitro cytotoxic activity and their DNA damage determination. Bioorg Chem 2022; 127:105997. [DOI: 10.1016/j.bioorg.2022.105997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/27/2022]
|
7
|
Phosphorus-nitrogen compounds: Part 66. Syntheses, structural and chiral properties of multiheterocyclic cis and trans bis(benzylspiro-N/N)cyclotriphosphazenes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Wang L, Su X, Xie JH, Ming LJ. Specific recognitions of multivalent cyclotriphosphazene derivatives in sensing, imaging, theranostics, and biomimetic catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Phosphorus–nitrogen compounds Part 55. Syntheses of 4-methoxybenzylspiro(N/N)cyclotriphosphazenes: chemical, structural and biological properties. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04505-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Liu P, Wang L, Chen L, Su X, Shi X. Cyclotriphosphazene-Based "Butterfly" Fluorescence Probe for Lysosome Targeting. Bioconjug Chem 2021; 32:1117-1122. [PMID: 34030446 DOI: 10.1021/acs.bioconjchem.1c00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cyclotriphosphazene-based "butterfly" fluorescence probe HCCP-MNI bearing two naphthalimide and morpholine units were developed for lysosome targeting. The synthesized HCCP-MNI exhibited stable fluorescence signals and was cytocompatible in the given concentration range. Co-localization experimental results showed that cells treated with the HCCP-MNI and a commercial dye (Lyso-Tracker Red DND-99) had overlapped fluorescence signals, demonstrating its targeting specificity to lysosomes. The developed HCCP-MNI may be used for cell tracking applications associated with the functionalities of lysosomes.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|