1
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
2
|
Aminudin NI, Abdul Aziz AA, Zainal Abidin ZA, Susanti D, Taher M. Enantioselective dihydroxylation of xanthorrhizol from Curcuma xanthorrhiza via biotransformation using Aspergillus Niger. Nat Prod Res 2024; 38:1583-1590. [PMID: 36577029 DOI: 10.1080/14786419.2022.2161543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Biotransformation is acknowledged as one of the green chemistry methods to synthesis various analogues for further valorization of natural product compounds chemistry and bioactivities. It has huge advantage over chemical synthesis due to its cost-efficiency and higher selectivity. In this work, a xanthorrhizol derivatives, namely (7 R,10S)-10,11-dihydro-10,11-dihydroxyxanthorrhizol was produced in 60% yield from the biotransformation process utilizing A. niger. The structure of the compound was established by extensive spectroscopic methods and comparison with literature data. This biotransformation successfully afforded enantioselective dihydroxylation reaction via green chemistry route. This is the first report on both biotransformation of xanthorrhizol and utilization of A. niger as its biocatalyst.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Ahmad Amzar Abdul Aziz
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| |
Collapse
|
3
|
Dos Santos VHP, Andre RS, Dos Anjos JP, Mercante LA, Correa DS, Silva EO. Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane. Folia Microbiol (Praha) 2024; 69:407-414. [PMID: 37979123 DOI: 10.1007/s12223-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.
Collapse
Affiliation(s)
| | - Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
- INCT in Energy and Environment, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
4
|
Pereira Dos Santos VH, Luiz JHH, Dos Anjos JP, de Oliveira Silva E. Oxidative potential of two Brazilian endophytic fungi from Handroanthus impetiginosus towards progesterone. Steroids 2022; 187:109101. [PMID: 35970224 DOI: 10.1016/j.steroids.2022.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
Biotransformation has been successfully employed to conduct uncommon reactions, which would hardly be carried out by chemical synthesis. A wide diversity of compounds may be metabolized by fungi, leading to chemical derivatives through selective reactions that work under ecofriendly conditions. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes for interesting chemical derivatization. Biotransformation of steroids by endophytic fungi may provide new derivatives as these microorganisms came from uncommon and underexplored habitats. In this study, endophytic strains isolated from Handroanthus impetiginosus leaves were assayed for biotransformation of progesterone, and its derivatives were identified through GC-EI-MS analysis. The endophyte Talaromyces sp. H4 was capable of transforming the steroidal nucleus selectively into four products through selective ene-reduction of the C4-C5 double bond and C-17 oxidation. The best conversion rate of progesterone (>90 %) was reached with Penicillium citrinum H7 endophytic strain that transformed the substrate into one derivative. The results highlight endophytic fungi's potential to obtain new and interesting steroidal derivatizations.
Collapse
Affiliation(s)
| | | | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, BA, Brazil; INCT in Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | - Eliane de Oliveira Silva
- Departament of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Rashid S, Anjum S, Ahmad A, Nadeem R, Ahmed M, Shah SAA, Abdullah M, Zia K, Ul-haq Z. Betamethasone Dipropionate Derivatization, Biotransformation, Molecular Docking, and ADME Analysis as Glucocorticoid Receptor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6865472. [PMID: 35865666 PMCID: PMC9296322 DOI: 10.1155/2022/6865472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Betamethasone is an important glucocorticoids (GCs), frequently used to cure allergies (such as asthma and angioedema), Crohn's disease, skin diseases (such as dermatitis and psoriasis), systemic lupus erythematosus, rheumatic disorders, and leukemia. Present investigation deals to find potential agonist of glucocorticoid receptors after biotransformation of betamethasone dipropionate (1) and to carry out the molecular docking and ADME analyses. Biotransformation of 1 was carried out with Launaea capitata (dandy) roots and Musa acuminate (banana) leaves. M. acuminate furnished low-cost value-added products such as Sananone dipropionate (2) in 5% yields. Further, biocatalysis of Sananone dipropionate (2) with M. acuminate gave Sananone propionate (3) and Sananone (4) in 12% and 7% yields, respectively. However, Sananone (4) was obtained in 37% yields from Launaea capitata. Compound 5 was obtained in 11% yield after β-elimination of propionic acid at C-17 during oxidation of compound 1. The structure elucidation of new compounds 2-5 was accomplished through combined use of X-ray diffraction and NMR (1D and 2D) studies. In addition to this, molecular docking and ADME analyses of all transformed products of 1 were also done. Compounds 1-5 showed -12.53 to -10.11 kcal/mol potential binding affinity with glucocorticoid receptor (GR) and good ADME profile. Moreover, all the compounds showed good oral bioavailability with the octanol/water partition coefficient in the range of 2.23 to 3.65, which indicated that compounds 1-5 were in significant agreement with the given criteria to be considered as drug-like.
Collapse
Affiliation(s)
- Sana Rashid
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aqeel Ahmad
- University of Chinese Academy of Science (UCAS), Beijing, China
| | - Raziya Nadeem
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Maqsood Ahmed
- Material Chemistry Lab, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor D. E, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 2300 Bandar Puncak Alam, Selangor, Malaysia
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
6
|
Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021. [DOI: 10.3390/catal11070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.
Collapse
|