1
|
Dong J, Pervaiz W, Tayyab B, Li D, Kang L, Zhang H, Gong H, Ma X, Li J, Agboyibor C, Bi Y, Liu H. A comprehensive comparative study on LSD1 in different cancers and tumor specific LSD1 inhibitors. Eur J Med Chem 2022; 240:114564. [PMID: 35820351 DOI: 10.1016/j.ejmech.2022.114564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/14/2023]
Abstract
LSD1 was significantly over-expressed in several cancer types, and its aberrant overexpression was revealed to play a crucial role in the initiation and progression of cancer. Several LSD1 inhibitors that were discovered and developed so far were found to be effective in attenuating tumor growth in both in vivo and in vitro studies. However, the major challenge associated with the development of cancer therapies is personalized treatment. Therefore, it is essential to look in detail at how LSD1 plays its part in carcinogenesis and whether there are any different expression levels of LSD1 in different tumors. Here in this review, fresh insight into a list of function correlated LSD1 binding proteins are provided, and we tried to figure out the role of LSD1 in different cancer types, including hematological malignancies and solid tumors. A critical description of mutation preference for LSD1 in different tumors was also discussed. Recent research findings clearly showed that the abrogation of LSD1 demethylase activity via LSD1 inhibitors markedly reduced the growth of cancer cells. But there are still many ambiguities regarding the role of LSD1 in different cancers. Therefore, targeting LSD1 for treating different cancers is still reductionist, and many challenges need to be met to improve the therapeutic outcomes of LSD1 inhibitors.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Tayyab
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Dié Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Clement Agboyibor
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Knockleby J, Kim BJ, Mehta A, Lee H. Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication. Cell Cycle 2016; 15:1494-505. [PMID: 27105124 PMCID: PMC4934051 DOI: 10.1080/15384101.2016.1176658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.
Collapse
Affiliation(s)
- James Knockleby
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Byung Ju Kim
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Avani Mehta
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
- Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
6
|
Shum D, Bhinder B, Radu C, Farazi T, Landthaler M, Tuschl T, Calder P, Ramirez CN, Djaballah H. An image-based biosensor assay strategy to screen for modulators of the microRNA 21 biogenesis pathway. Comb Chem High Throughput Screen 2013; 15:529-41. [PMID: 22540737 DOI: 10.2174/138620712801619131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/12/2011] [Accepted: 04/13/2012] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are evolutionary conserved, small endogenous non-coding, RNA molecules. Although their mode of action has been extensively studied, little is known about their biogenesis. As their altered expression has been implicated in many diseases, small molecules that would modulate their expression are sought after. They are generated through the concerted action of several complexes which promote their transcription, maturation, export, trafficking, and loading of mature miRNA into silencing complexes. An increasing number of studies have suggested that each of these steps serves as a regulatory junction in the process, and therefore provides an intervention point. For this purpose, we have developed a simple image-based assay strategy to screen for such modulators. Here, we describe its successful implementation which combines the use of a microRNA 21 (miR-21) synthetic mimic together with an EGFP based reporter cell line, where its expression is under the control of miR-21, to monitor EGFP expression in a format suitable for HTS. The strategy was further validated using a small panel of known gene modulators of the miRNA pathway. A screen was performed in duplicate against a library of 6,912 compounds and identified 48 initial positives exhibiting enhanced EGFP fluorescence intensity. 42 compounds were found to be inherently fluorescent in the green channel leaving the remaining 6 as potential inhibitors and with a positive rate of 0.09%. Taken together, this validated strategy offers the opportunity to discover novel and specific inhibitors of the pathway through the screening of diverse chemical libraries.
Collapse
Affiliation(s)
- David Shum
- HTS Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|