1
|
Kicheeva AG, Sushko ES, Bondarenko LS, Baimuratova RK, Kydralieva KA, Schwaminger SP, Prassl R, Tropskaya NS, Dzhardimalieva GI, Smirnykh DV, Martynova AA, Kudryasheva NS. Cytotoxic and radical activities of metal-organic framework modified with iron oxide: Biological and physico-chemical analyses. Chem Biol Interact 2024; 399:111150. [PMID: 39025288 DOI: 10.1016/j.cbi.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Metal-organic framework (MOF) modified with iron oxide, Fe3O4-MOF, is a perspective drug delivery agent, enabling magnetic control and production of active hydroxyl radicals, •OH, via the Fenton reaction. This paper studies cytotoxic and radical activities of Fe-containing nanoparticles (NPs): Fe3O4-MOF and its components - bare Fe3O4 and MOF (MIL-88B). Luminous marine bacteria Photobacteriumphosphoreum were used as a model cellular system to monitor bioeffects of the NPs. Neither the NPs of Fe3O4-MOF nor MOF showed cytotoxic effects in a wide range of concentrations (<10 mg/L); while Fe3O4 was toxic at >3·10-3 mg/L. The NPs of Fe3O4 did not affect the bacterial bioluminescence enzymatic system; their toxic effect was attributed to cellular membrane processes. The integral content of reactive oxygen species (ROS) was determined using a chemiluminescence luminol assay. Bacteria mitigated excess of ROS in water suspensions of Fe3O4-MOF and MOF, maintaining bioluminescence intensity closer to the control; this resulted in low toxicity of these NPs. We estimated the activity of •OH radicals in the NPs samples with physical and chemical methods - spin capture technology (using electron paramagnetic resonance spectroscopy) and methylene blue degradation. Physico-chemical interpretation of cellular responses is provided in terms of iron content, iron ions release and •OH radical production.
Collapse
Affiliation(s)
- Arina G Kicheeva
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036, Krasnoyarsk, Russia.
| | - Ekaterina S Sushko
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036, Krasnoyarsk, Russia; Siberian Federal University, 660041, Krasnoyarsk, Russia.
| | - Lyubov S Bondarenko
- Moscow Aviation Institute (National Research University), 125993, Moscow, Russia
| | - Rose K Baimuratova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University), 125993, Moscow, Russia
| | - Sebastian P Schwaminger
- BioTechMed-Graz, 8010, Graz, Austria; Division of Medicinal Chemistry, Medizinische Universität Graz, Otto Loewi Forschungszentrum, Neue Stiftingtalstraße 6, 3. Stock, A-8010, Graz, Austria
| | - Ruth Prassl
- BioTechMed-Graz, 8010, Graz, Austria; Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 2, Graz, 8010, Austria
| | - Nataliya S Tropskaya
- Moscow Aviation Institute (National Research University), 125993, Moscow, Russia; Sklifosovsky Institute for Emergency Medicine, Moscow, Russia
| | - Gulzhian I Dzhardimalieva
- Moscow Aviation Institute (National Research University), 125993, Moscow, Russia; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | | | | | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036, Krasnoyarsk, Russia; Siberian Federal University, 660041, Krasnoyarsk, Russia.
| |
Collapse
|
2
|
Kicheeva AG, Sushko ES, Bondarenko LS, Kydralieva KA, Pankratov DA, Tropskaya NS, Dzeranov AA, Dzhardimalieva GI, Zarrelli M, Kudryasheva NS. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int J Mol Sci 2023; 24:ijms24021133. [PMID: 36674650 PMCID: PMC9861541 DOI: 10.3390/ijms24021133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of magnetite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltriethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration range (10−15−1 g/L). Under the conditions of model oxidative stress and higher concentrations of MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis phenomenon based on iron-initiated cell-membrane lipid peroxidation.
Collapse
Affiliation(s)
- Arina G. Kicheeva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Ekaterina S. Sushko
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Institute of Physics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Lyubov S. Bondarenko
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Kamila A. Kydralieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Denis A. Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya S. Tropskaya
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Artur A. Dzeranov
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Gulzhian I. Dzhardimalieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le Fermi, 1, 80055 Portici, Italy
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-3912-494-242
| |
Collapse
|
3
|
Toxicity of Different Types of Surfactants via Cellular and Enzymatic Assay Systems. Int J Mol Sci 2022; 24:ijms24010515. [PMID: 36613956 PMCID: PMC9820146 DOI: 10.3390/ijms24010515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Surfactants have a widespread occurrence, not only as household detergents, but also in their application in industry and medicine. There are numerous bioassays for assessing surfactant toxicity, but investigations of their impact on biological systems at the molecular level are still needed. In this paper, luminous marine bacteria and their coupled NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) enzyme system was applied to examine the effects of different types of surfactants, including cationic cetyltrimethylammonium bromide (CTAB), non-ionic polyoxyethylene 20 sorbitan monooleate (Tween 80) and anionic sodium lauryl sulfate (SLS), and to assess whether the Red + Luc enzyme system can be used as a more sensitive indicator of toxicity. It was shown that the greatest inhibitory effect of the surfactants on the activity of luminous bacteria and the Red + Luc enzyme system was in the presence of SLS samples. The calculated IC50 and EC50 values of SLS were 10-5 M and 10-2 M for the enzymatic and cellular assay systems, respectively. The results highlight the benefits of using the enzymatic assay system in ecotoxicology as a tool for revealing surfactant effects on intracellular proteins if the cellular membrane is damaged under a long-term exposure period in the presence of the surfactants. For this purpose, the bioluminescent enzyme-inhibition-based assay could be used as an advanced research tool for the evaluation of surfactant toxicity at the molecular level of living organisms due to its technical simplicity and rapid response time.
Collapse
|
4
|
Abstract
Tritium is a byproduct of many radiochemical reactions in the nuclear industry, and its effects on aquatic organisms, particularly low-dose effects, deserve special attention. The low-dose effects of tritium on aquatic microbiota have been intensively studied using luminous marine bacteria as model microorganisms. Low-dose physiological activation has been demonstrated and explained by the signaling role of reactive oxygen species through the “bystander effect” in bacterial suspensions. The activation of microbial functions in natural reservoirs by low tritium concentrations can cause unpredictable changes in food chains and imbalances in the natural equilibrium. The incorporation of tritium from the free form into organically bound compounds mainly occurs in the dark and at a temperature of 25 °C. When tritium is ingested by marine animals, up to 56% of tritium is accumulated in the muscle tissue and up to 36% in the liver. About 50% of tritium in the liver is bound in non-exchangeable forms. Human ingestion of water and food products contaminated with background levels of tritium does not significantly contribute to the total dose load on the human body.
Collapse
|
5
|
Esimbekova EN, Kalyabina VP, Kopylova KV, Torgashina IG, Kratasyuk VA. Design of bioluminescent biosensors for assessing contamination of complex matrices. Talanta 2021; 233:122509. [PMID: 34215124 DOI: 10.1016/j.talanta.2021.122509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/29/2023]
Abstract
The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes.
Collapse
Affiliation(s)
- Elena N Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | - Valeriya P Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Irina G Torgashina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia; Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
6
|
Bacterial Luciferases from Vibrio harveyi and Photobacterium leiognathi Demonstrate Different Conformational Stability as Detected by Time-Resolved Fluorescence Spectroscopy. Int J Mol Sci 2021; 22:ijms221910449. [PMID: 34638798 PMCID: PMC8508739 DOI: 10.3390/ijms221910449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of α-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods.
Collapse
|
7
|
Lisitsa AE, Sukovatyi LA, Bartsev SI, Deeva AA, Kratasyuk VA, Nemtseva EV. Mechanisms of Viscous Media Effects on Elementary Steps of Bacterial Bioluminescent Reaction. Int J Mol Sci 2021; 22:8827. [PMID: 34445534 PMCID: PMC8396235 DOI: 10.3390/ijms22168827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial bioluminescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. Moreover, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important αGlu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis.
Collapse
Affiliation(s)
- Albert E Lisitsa
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Sergey I Bartsev
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| |
Collapse
|
8
|
Muhammad ARH, Abu-Elreesh G, Sedik M, Moawad H, Sabbor AT, Abd-El-Haleem D. Studying the behavior of the light-off bioreporter DF4/PUTK2 as a light-on assay against lead. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Toxicity and Antioxidant Activity of Fullerenol C 60,70 with Low Number of Oxygen Substituents. Int J Mol Sci 2021; 22:ijms22126382. [PMID: 34203700 PMCID: PMC8232284 DOI: 10.3390/ijms22126382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/01/2023] Open
Abstract
Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.
Collapse
|
12
|
Snell TW, Persoone G. A rapid, simple screening toxicity test using desiccated bdelloid rotifers: Rotifer Activity Inhibition Test (RAIT). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3810-3819. [PMID: 32462623 DOI: 10.1007/s11356-020-09255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A protocol for an ultra-rapid screening toxicity test is described using the rotifer Philodina acuticornis/roseola. The test can be executed in 30 min starting from the rehydration of desiccated life stages called tuns. Philodina tuns remain viable for years when maintained dry and at low temperature. They are very useful for conducting toxicity tests because the test animals do not require cultivation and are available to initiate tests anytime and anywhere. The swimming/crawling activity of rehydrated Philodina tuns is used as an endpoint to compare activity in control dilution water with inhibition of activity in an environmental sample. The Rotifer Activity Inhibition Test (RAIT) estimates toxicity semi-quantitatively using four toxicity categories: non-toxic, slightly toxic, very toxic, and 100% toxic. As proof of principle, RAIT has been tested on environmental samples from a variety of habitats and RAIT results have been compared with those obtained from traditional toxicity tests with bacteria, algae, Daphnia, and fish. Broad congruence between the effect signals of the rapid RAIT screening test and traditional assays has been found for river surface waters, industrial wastewaters, and sludge leachates from waste water treatment plants. Rotifers are an important group of animals in aquatic and soil food webs, and RAIT is a welcome new method for simple, ultra-rapid, and low-cost toxicity screening with a representative of this ecologically important group.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Guido Persoone
- Laboratory for Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Rozhko TV, Nemtseva EV, Gardt MV, Raikov AV, Lisitsa AE, Badun GA, Kudryasheva NS. Enzymatic Responses to Low-Intensity Radiation of Tritium. Int J Mol Sci 2020; 21:E8464. [PMID: 33187108 PMCID: PMC7696592 DOI: 10.3390/ijms21228464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations ≤ 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the 'hormetic' response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon.
Collapse
Affiliation(s)
- Tatiana V. Rozhko
- Department of Medical and Biological Physics, Krasnoyarsk State Medical Academy, 660022 Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Maria V. Gardt
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Alexander V. Raikov
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Albert E. Lisitsa
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
| | - Gennadii A. Badun
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia;
| | - Nadezhda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.V.N.); (M.V.G.); (A.V.R.); (A.E.L.); (N.S.K.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
14
|
Kratasyuk VA, Stepanova LV, Ranjan R, Sutormin OS, Pande S, Zhukova GV, Miller OM, Maznyak NV, Kolenchukova OA. A noninvasive and qualitative bioluminescent assay for express diagnostics of athletes' responses to physical exertion. LUMINESCENCE 2020; 36:384-390. [PMID: 32986910 DOI: 10.1002/bio.3954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Upcoming professional sports authorities seek rapid noninvasive biosensing tools for regular monitoring of athletes' physiological states. The analysis of saliva through luminescence-based biosensors has been perceived as a suitable candidate for such purposes. The present study reports a qualitative bioluminescence assay based on a coupled enzyme system that consists of bacterial luciferase (BLuc) and nicotinamide adenine dinucleotide (NADH):flavin mononucleotide (FMN) oxidoreductase (Red), BLuc-Red, for the express diagnostics of athletes' stress levels before and after physical exertion. The volunteers who participated in the study were grouped as freestyle wrestlers and students who adapted to different levels of physical activities. Under physical exertion modelling conditions, the influence of participant saliva on BLuc-Red catalyzed light emission was investigated. Results showed a significant increase in residual luminescence (Iexp , mean maximum bioluminescence intensity of the experimental measurement (Iexp ); Ic , luminescence intensity in control; Iexp /Ic , %) values for participants in the wrestler group while a decrease in the student group (P < 0.05). Such contrasting residual luminescence values in both groups were found to be dependent on the catalase activity of saliva. The proposed bioluminescence assay can be utilized as a potential nonspecific biosensing tool for determining the physical state of athletes under high loads.
Collapse
Affiliation(s)
- Valentina A Kratasyuk
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Federal Research Center 'Krasnoyarsk Science Center SB RAS', Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk, Russia
| | - Lyudmila V Stepanova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Rajeev Ranjan
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Oleg S Sutormin
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Shubhra Pande
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Krasnoyarsk State Medical University named after professor V.F.Voyno-Yasenetsky of the Ministry of Health of the Russian Federation, Av. Partizan Zheleznyak 1, Krasnoyarsk, Russia
| | - Galina V Zhukova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Olga M Miller
- Krasnoyarsk Maternity and Childhood Protection Center, Kirenskogo Street 2a, Krasnoyarsk, Russia
| | - Natalya V Maznyak
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Oksana A Kolenchukova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Scientific Research Institute of Medical Problems of the North, Av. Partizan Zheleznyak 3g, Krasnoyarsk, Russia
| |
Collapse
|
15
|
Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21186783. [PMID: 32947870 PMCID: PMC7556015 DOI: 10.3390/ijms21186783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
The paper studies the combined effects of beta-emitting radionuclide tritium and Humic Substances (HS) on the marine unicellular microorganism—luminous bacteria—under conditions of low-dose radiation exposures (<0.04 Gy). Tritium was used as a component of tritiated water. Bacterial luminescence intensity was considered as a tested physiological parameter. The bioluminescence response of the marine bacteria to tritium corresponded to the “hormesis” model: it included stages of bioluminescence inhibition and activation, as well as the absence of the effect. HS were shown to decrease the inhibition and activation effects of tritium, similar to those of americium-241, alpha-emitting radionuclide, studied earlier. Correlations between the bioluminescence intensity and the content of Reactive Oxygen Species (ROS) were found in the radioactive bacterial suspensions. The results demonstrate an important role of HS in natural processes in the regions of low radioactive contamination: HS can mitigate radiotoxic effects and adaptive response of microorganisms to low-dose radioactive exposures. The involvement of ROS in these processes was demonstrated.
Collapse
|
16
|
Rezaei Z, Mahmoudifard M. Pivotal role of electrospun nanofibers in microfluidic diagnostic systems - a review. J Mater Chem B 2020; 7:4602-4619. [PMID: 31364667 DOI: 10.1039/c9tb00682f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the usage of electrospinning technology for the fabrication of fine fibers with a good deal of variation in morphology and structure has drawn the attention of many researchers around the world. These fibers have found their way in the many fields of science including medical diagnosis, tissue engineering, drug delivery, replica molding, solar cells, catalysts, energy conversion and storage, physical and chemical sensors and other applications. Among all applications, biosensing with the aim of rapid and sensitive biomarker detection is an area that warrants attention. Electrospun nanofibrous membranes enjoy numerous factors which benefit them to be used as potential candidates in biosensing platforms. Some of these factors include a high surface to volume ratio, analogous scale compared to bioactive molecules and relatively defect-free properties of nanofibers (NFs). In this review, we focused on the recent advances in electrospun nanofibrous membrane-based micro-analytical devices with an application as diagnostic systems. Hence, a study on the electrospun nanofiber usage in lab-on-a-chip and paper-based point-of-care devices, with an opening introduction to biosensors, nanofibers, the electrospinning method, and microfluidics as the principles of the intended subject, is provided. It is anticipated that the given examples in this paper will provide sufficient evidence for the potential of electrospun NFs for being used as a substrate in the commercial fabrication of highly sensitive and selective biosensors.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran and Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
17
|
Bondarenko LS, Kovel ES, Kydralieva KA, Dzhardimalieva GI, Illés E, Tombácz E, Kicheeva AG, Kudryasheva NS. Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1499. [PMID: 32751621 PMCID: PMC7466415 DOI: 10.3390/nano10081499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Current paper presents biological effects of magnetite nanoparticles (MNPs). "Relations of MNP' characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus.". Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc.
Collapse
Affiliation(s)
- Lyubov S. Bondarenko
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia; (L.S.B.); (K.A.K.); (G.I.D.)
| | - Ekaterina S. Kovel
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia;
| | - Kamila A. Kydralieva
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia; (L.S.B.); (K.A.K.); (G.I.D.)
| | - Gulzhian I. Dzhardimalieva
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia; (L.S.B.); (K.A.K.); (G.I.D.)
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia
| | - Erzsébet Illés
- University of Szeged, H-6720 Szeged, Hungary; (E.I.); (E.T.)
| | - Etelka Tombácz
- University of Szeged, H-6720 Szeged, Hungary; (E.I.); (E.T.)
| | | | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia;
- Siberian Federal University, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
18
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
19
|
Kudryasheva NS, Kovel ES. Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins. Int J Mol Sci 2019; 20:E4451. [PMID: 31509958 PMCID: PMC6770735 DOI: 10.3390/ijms20184451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The current paper reviews the applications of luminescence bioassays for monitoring the results of low-intensity exposures which produce a stimulative effect. The impacts of radioactivity of different types (alpha, beta, and gamma) and bioactive compounds (humic substances and fullerenols) are under consideration. Bioassays based on luminous marine bacteria, their enzymes, and fluorescent coelenteramide-containing proteins were used to compare the results of the low-intensity exposures at the cellular, biochemical, and physicochemical levels, respectively. High rates of luminescence response can provide (1) a proper number of experimental results under comparable conditions and, therefore, proper statistical processing, with this being highly important for "noisy" low-intensity exposures; and (2) non-genetic, i.e., biochemical and physicochemical mechanisms of cellular response for short-term exposures. The results of cellular exposures were discussed in terms of the hormesis concept, which implies low-dose stimulation and high-dose inhibition of physiological functions. Dependencies of the luminescence response on the exposure time or intensity (radionuclide concentration/gamma radiation dose rate, concentration of the bioactive compounds) were analyzed and compared for bioassays of different organization levels.
Collapse
Affiliation(s)
- Nadezhda S Kudryasheva
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch", Krasnoyarsk 660036, Russia.
- Siberian Federal University, Krasnoyarsk 660041, Russia.
| | - Ekaterina S Kovel
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch", Krasnoyarsk 660036, Russia
- Institute of Physics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch", Krasnoyarsk 660036, Russia
| |
Collapse
|
20
|
Govorun AE, Esimbekova EN, Kratasyuk VA. NAD(P)H:FMN‑Oxidoreductase Functioning Under Macromolecular Crowding: In Vitro Modeling. DOKL BIOCHEM BIOPHYS 2019; 486:213-215. [PMID: 31367824 DOI: 10.1134/s160767291903013x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/23/2022]
Abstract
The functioning of NAD(P)H:FMN‑oxidoreductase (Red) from Vibrio fischeri under conditions of macromolecular crowding (MMC) simulated in vitro by adding biopolymers (starch and gelatin) was studied. The dissociation rate constants and the activation energies of dissociation of Red to the subunits were calculated, and the process of denaturation of Red was analyzed. It is shown that the functioning of Red both under conditions of MMC and in diluted solutions is the same. This result refutes the common belief that the native conformation of enzymes in vivo is stabilized due to MMC as compared to the in vitro conditions.
Collapse
Affiliation(s)
- A E Govorun
- Siberian Federal University, 660041, Krasnoyarsk, Russia.
| | - E N Esimbekova
- Siberian Federal University, 660041, Krasnoyarsk, Russia.,Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
| | - V A Kratasyuk
- Siberian Federal University, 660041, Krasnoyarsk, Russia.,Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
| |
Collapse
|
21
|
Kalyabina VP, Esimbekova EN, Torgashina IG, Kopylova KV, Kratasyuk VA. Principles for Construction of Bioluminescent Enzyme Biotests for Analysis of Complex Media. DOKL BIOCHEM BIOPHYS 2019; 485:107-110. [PMID: 31201626 DOI: 10.1134/s1607672919020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/23/2022]
Abstract
In this study, we formulated the principles of designing bioluminescent enzyme tests for assessing the quality of complex media, which consist in providing the maximum sensitivity to potentially toxic chemicals at a minimal impact of uncontaminated complex media. The developed principles served as a basis for designing a new bioluminescent method for an integrated rapid assessment of chemical safety of fruits and vegetables, which is based on using the luminous bacteria enzymes (NAD(P)H:FMN oxidoreductase and luciferase) as a test system.
Collapse
Affiliation(s)
- V P Kalyabina
- Siberian Federal University, Krasnoyarsk, Russia.,Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - E N Esimbekova
- Siberian Federal University, Krasnoyarsk, Russia. .,Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia.
| | | | - K V Kopylova
- Siberian Federal University, Krasnoyarsk, Russia
| | - V A Kratasyuk
- Siberian Federal University, Krasnoyarsk, Russia.,Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
22
|
Kovel ES, Sachkova AS, Vnukova NG, Churilov GN, Knyazeva EM, Kudryasheva NS. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents. Int J Mol Sci 2019; 20:ijms20092324. [PMID: 31083407 PMCID: PMC6539272 DOI: 10.3390/ijms20092324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, a specific allotropic form of carbon, bioactive compounds, and perspective basis for drug development. Our paper analyzes the antioxidant activity and toxicity of a series of fullerenols with different number of oxygen substituents. Two groups of fullerenols were under investigation: (1) C60Oy(OH)x, C60,70Oy(OH)x, where x+y = 24–28 and (2) C60,70Oy(OH)x, Fe0,5C60Oy(OH)x, Gd@C82Oy(OH)x, where x+y = 40–42. Bioluminescent cellular and enzymatic assays (luminous marine bacteria and their enzymatic reactions, respectively) were applied to monitor toxicity in the model fullerenol solutions and bioluminescence was applied as a signaling physiological parameter. The inhibiting concentrations of the fullerenols were determined, revealing the fullerenols’ toxic effects. Antioxidant fullerenol’ ability was studied in solutions of model oxidizer, 1,4-benzoquinone, and detoxification coefficients of general and oxidative types (DGT and DOxT) were calculated. All fullerenols produced toxic effect at high concentrations (>0.01 g L−1), while their antioxidant activity was demonstrated at low and ultralow concentrations (<0.001 g L−1). Quantitative toxic and antioxidant characteristics of the fullerenols (effective concentrations, concentration ranges, DGT, and DOxT) were found to depend on the number of oxygen substituents. Lower toxicity and higher antioxidant activity were determined in solutions of fullerenols with fewer oxygen substituents (x+y = 24–28). The differences in fullerenol properties were attributed to their catalytic activity due to reversible electron acceptance, radical trapping, and balance of reactive oxygen species in aqueous solutions. The results provide pharmaceutical sciences with a basis for selection of carbon nanoparticles with appropriate toxic and antioxidant characteristics. Based on the results, we recommend, to reduce the toxicity of prospective endohedral gadolinium-fullerenol preparations Gd@C82Oy(OH)x, decreasing the number of oxygen groups to x+y = 24–28. The potential of bioluminescence methods to compare toxic and antioxidant characteristics of carbon nanostructures were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S Kovel
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
| | - Anna S Sachkova
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Natalia G Vnukova
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| | - Grigoriy N Churilov
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| | - Elena M Knyazeva
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| |
Collapse
|
23
|
Petrova AS, Lukonina AA, Dementyev DV, Ya Bolsunovsky A, Popov AV, Kudryasheva NS. Protein-based fluorescent bioassay for low-dose gamma radiation exposures. Anal Bioanal Chem 2018; 410:6837-6844. [PMID: 30062510 DOI: 10.1007/s00216-018-1282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/30/2023]
Abstract
The study suggests an application of a coelenteramide-containing fluorescent protein (CLM-CFP) as a simplest bioassay for gamma radiation exposures. "Discharged obelin," a product of the bioluminescence reaction of the marine coelenterate Obelia longissima, was used as a representative of the CLM-CFP group. The bioassay is based on a simple enzymatic reaction-photochemical proton transfer in the coelenteramide-apoprotein complex. Components of this reaction differ in fluorescence color, providing, by this, an evaluation of the proton transfer efficiency in the photochemical process. This efficiency depends on the microenvironment of the coelenteramide within the protein complex, and, hence, can evaluate a destructive ability of gamma radiation. The CLM-CFP samples were exposed to gamma radiation (137Cs, 2 mGy/h) for 7 and 16 days at 20 °C and 5 °C, respectively. As a result, two fluorescence characteristics (overall fluorescence intensity and contributions of color components to the fluorescence spectra) were identified as bioassay parameters. Both parameters demonstrated high sensitivity of the CLM-CFP-based bioassay to the low-dose gamma radiation exposure (up to 100 mGy). Higher temperature (20 °C) enhanced the response of CLM-CFP to gamma radiation. This new bioassay can provide fluorescent multicolor assessment of protein destruction in cells and physiological liquids under exposure to low doses of gamma radiation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Alena S Petrova
- Krasnoyarsk State Agrarian University, Mira Avenue 90, Krasnoyarsk, 660049, Russia
| | - Anna A Lukonina
- Siberian Federal University, Svobodnyy Ave 79, Krasnoyarsk, 660041, Russia
| | - Dmitry V Dementyev
- Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russia
| | | | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania, 3401 N Broad St., Philadelphia, PA, 19140, USA
| | - Nadezhda S Kudryasheva
- Siberian Federal University, Svobodnyy Ave 79, Krasnoyarsk, 660041, Russia. .,Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
24
|
Denisov I, Lukyanenko K, Yakimov A, Kukhtevich I, Esimbekova E, Belobrov P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. LUMINESCENCE 2018; 33:1054-1061. [DOI: 10.1002/bio.3508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Elena Esimbekova
- Siberian Federal University; Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’; Krasnoyarsk Russia
| | | |
Collapse
|
25
|
Lukyanenko KA, Denisov IA, Yakimov AS, Esimbekova EN, Belousov KI, Bukatin AS, Kukhtevich IV, Sorokin VV, Evstrapov AA, Belobrov PI. Analytical Enzymatic Reactions in Microfluidic Chips. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817070043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Esimbekova EN, Asanova AA, Deeva AA, Kratasyuk VA. Inhibition effect of food preservatives on endoproteinases. Food Chem 2017; 235:294-297. [DOI: 10.1016/j.foodchem.2017.05.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
27
|
Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67. Toxins (Basel) 2017; 9:toxins9100335. [PMID: 29065469 PMCID: PMC5666381 DOI: 10.3390/toxins9100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98) between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin) and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96) between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50) = 17.49%) exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56%) or Fusarium oxysporum (IC50 = 28.61%), which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.
Collapse
|
28
|
Metal-enhanced luminescence: Current trend and future perspectives- A review. Anal Chim Acta 2017; 971:1-13. [DOI: 10.1016/j.aca.2017.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
29
|
Petrova AS, Lukonina AA, Badun GA, Kudryasheva NS. Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects. Anal Bioanal Chem 2017; 409:4377-4381. [PMID: 28527000 DOI: 10.1007/s00216-017-0404-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 01/28/2023]
Abstract
The study addresses the application of fluorescent coelenteramide-containing proteins as color bioindicators for radiotoxicity evaluation. Biological effects of chronic low-dose radiation are under investigation. Tritiated water (200 MBq/L) was used as a model source of low-intensive ionizing radiation of beta type. 'Discharged obelin,' product of bioluminescent reaction of marine coelenterate Obelia longissimi, was used as a representative of the coelenteramide-containing proteins. Coelenteramide, fluorophore of discharged obelin, is a photochemically active molecule; it produces fluorescence forms of different color. Contributions of 'violet' and 'blue-green' forms to the visible fluorescence serve as tested parameters. The contributions depend on the coelenteramide's microenvironment in the protein, and, hence, evaluate distractive ability and toxicity of radiation. The protein samples were exposed to beta radiation for 18 days, and maximal dose accumulated by the samples was 0.28 Gy, being close to a tentative limit of a low-dose interval. Increase of relative contribution of 'violet' fluorescence under exposure to the beta irradiation was revealed. High sensitivity of the protein-based test system to low-dose ionizing radiation (to 0.03 Gy) was demonstrated. The study develops physicochemical understanding of radiotoxic effects. Graphical abstract Coelenteramide-containing protein (discharged obelin) changes fluorescence color under exposure to low-dose ionizing radiation of tritium.
Collapse
Affiliation(s)
- Alena S Petrova
- Institute of Biophysics SB RAS, FRC KSC SB RAS, Akademgorodok 50, Krasnoyarsk, 660036, Russia.,Krasnoyarsk State Agrarian University, Krasnoyarsk, 660049, Russia
| | - Anna A Lukonina
- Institute of Biophysics SB RAS, FRC KSC SB RAS, Akademgorodok 50, Krasnoyarsk, 660036, Russia.,Siberian Federal University, Krasnoyarsk, 660041, Russia
| | | | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, FRC KSC SB RAS, Akademgorodok 50, Krasnoyarsk, 660036, Russia. .,Siberian Federal University, Krasnoyarsk, 660041, Russia.
| |
Collapse
|
30
|
Esimbekova EN, Nemtseva EV, Kirillova MA, Asanova AA, Kratasyuk VA. Bioluminescent assay for toxicological assessment of nanomaterials. DOKL BIOCHEM BIOPHYS 2017; 472:60-63. [PMID: 28421437 DOI: 10.1134/s1607672917010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/22/2022]
Abstract
A new method for assessing biotoxicity of nanomaterials, based on the use of soluble bioluminescent coupled enzyme system NAD(P)⋅H:FMN oxidoreductase and luciferase, is proposed. The results of this study indicate a significant adverse biological effect exerted by nanoparticles at the molecular level. It was found that the most toxic nanoparticles the nanoparticles are based on copper and copper oxide, as well as single-walled carbon nanotubes and multi-walled carbon nanofibers, which are referred to hazard class II.
Collapse
Affiliation(s)
- E N Esimbekova
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia. .,Siberian Federal University, Krasnoyarsk, Russia.
| | - E V Nemtseva
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| | | | - A A Asanova
- Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
| | - V A Kratasyuk
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| |
Collapse
|
31
|
Alieva RR, Kudryasheva NS. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017; 170:425-431. [PMID: 28501192 DOI: 10.1016/j.talanta.2017.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures - chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.
Collapse
Affiliation(s)
- Roza R Alieva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
32
|
On mechanism of antioxidant effect of fullerenols. Biochem Biophys Rep 2016; 9:1-8. [PMID: 28955983 PMCID: PMC5614482 DOI: 10.1016/j.bbrep.2016.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type - 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: С60О2-4(ОН)20-24 and mixture of two types of fullerenols С60О2-4(ОН)20-24+С70О2-4(ОН)20-24. Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active (ca 10-17-10-4 and 10-17-10-5 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10-8 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response.
Collapse
|
33
|
Kudryasheva NS, Kovel ES, Sachkova AS, Vorobeva AA, Isakova VG, Churilov GN. Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds. Photochem Photobiol 2016; 93:536-540. [PMID: 27645453 DOI: 10.1111/php.12639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN-oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water-soluble polyhydroxylated fullerene-60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60 O2-4 (OH)20-24 and Fe0.5 C60 (OH) x Oy (x + y = 40-42), were used. They suppressed bioluminescent intensity at concentrations >0.01 g L-1 and >0.001 g L-1 for C60 O2-4 (OH)20-24 and Fe0.5 C60 (OH)x Oy , respectively; hence, a lower toxicity of C60 O2-4 (OH)20-24 was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60 O2-4 (OH)20-24 revealed higher antioxidant ability at concentrations 10-17 -10-5 g L-1 . The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.
Collapse
Affiliation(s)
- Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| | - Ekaterina S Kovel
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| | - Anna S Sachkova
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna A Vorobeva
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | | | | |
Collapse
|
34
|
Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 2016; 87:918-930. [PMID: 27664412 DOI: 10.1016/j.bios.2016.09.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 12/14/2022]
Abstract
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia
| | - Elena N Esimbekova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia.
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|