1
|
Pan Y, Yang Z, Wei M, Gan Y, Liu M, Zou W. Hypertensive Nephropathy Changes the Expression of Drug-Metabolizing Enzymes and Transporters in Spontaneously Hypertensive Rat Liver and Kidney. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00923-2. [PMID: 39522097 DOI: 10.1007/s13318-024-00923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Hypertensive nephropathy (HN) has become one of the main causes of end-stage renal disease. Drug combination therapy is a common clinical treatment for HN. However, the impact of HN on drug-metabolizing enzymes and transporters, which may lead to drug-drug interactions (DDIs) and even trigger toxic side effects, remains unclear. The aim of this study was to investigate changes in major drug-metabolizing enzymes and transporters in the liver and kidney of HN rats to improve the scientific foundations for the clinical treatment of HN. METHODS Spontaneously hypertensive rats (SHRs) were used as an animal HN model because their hypertension is similar to that of humans. Wistar-Kyoto rats (WKYs) were used as the control group. Body weight, blood pressure, hematoxylin-eosin (HE) staining and biochemical analysis were performed to evaluate whether the HN model was successfully constructed. Quantitative real-time polymerase chain reaction (PCR) and western blotting were used to evaluate the mRNA and protein expression of drug-metabolizing enzymes, transporters and related nuclear transcription factors. RESULTS In HN rats, the mRNA expression of the drug-metabolizing enzymes cytochrome P450 (Cyp) 2b1, Cyp2c11, Cyp3a1 and Cyp7a1 was significantly upregulated. The protein level of CYP3A1 was consistent with its mRNA expression. Interestingly, the mRNA expression of the hepatic transporters organic cation transporter (Oct) 1, Oct2, organic anion transporter (Oat) 1, Oat2, multidrug resistant protein (Mrp) 2, multidrug resistance (Mdr) 1, organic anion transporting polypeptide (Oatp) 1b2 and na+/taurocholate cotransporting polypeptide (Ntcp) was also markedly upregulated. This may be directly influenced by the upregulation of the expression of the nuclear receptors farnesoid X receptor (Fxr), pregnane X receptor (Pxr), liver X-activated receptor (Lxr) and constitutive androstane receptor (Car). In the kidney of HN rats, the mRNA level of the drug-metabolizing enzyme Cyp2b1 significantly increased, while levels of Cyp1a1, Cyp2c11, Cyp3a1 and Cyp3a2 did not significantly change. The mRNA expression of the transporters multidrug and toxin extrusion (Mate) 1 and Mrp2 was obviously increased but was markedly depressed for peptide transporters (Pept) 1 and Pept2. These changes may be related to the cross effects of Pxr, Fxr and Car in kidney. CONCLUSION HN pathological status can alter the expression of drug-metabolizing enzymes and transporters in the liver and kidney to varying degrees, thus affecting the disposition of substrate drugs in vivo. This suggests that to avoid potential risks, caution should be exercised when administering combination therapy for HN treatment.
Collapse
Affiliation(s)
- Yueqing Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Zhuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Minlong Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yulin Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Li X. Notable drug-drug interaction between omeprazole and voriconazole in CYP2C19 *1 and *2 (rs4244285, 681G>A) alleles in vitro. Xenobiotica 2024; 54:847-854. [PMID: 39445918 DOI: 10.1080/00498254.2024.2421513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The drug-drug interaction (DDI) and CYP2C19 genetic variation can lead to a high blood concentration of voriconazole. CYP2C19 is a highly genetically polymorphic enzyme, and CYP2C19*2 is more frequent among Asians associated with reduced metabolism of drugs. Clinical study found that co-administration with omeprazole significantly increased voriconazole concentrations and there was an additive effect in CYP2C19*2 allele.CYP2C19 rs4244285 (681G>A) is the key polymorphism of CYP2C19*2 allele. This study aims to describe the in vitro effects of omeprazole on CYP2C19*1 and *2 (681G>A), and determine how CYP2C19 polymorphisms influence the DDI between omeprazole and voriconazole.Using the lentiviral expression system, we successfully generated HepG2-derived cell lines stably expressing CYP2C19*1 and *2 (681G>A). The results showed that the CYP2C19 mRNA level, protein level, and enzymatic activity were lower in HepG2-CYP2C19*2 (681G>A) than HepG2-CYP2C19*1 cells. Our study also showed that the inhibition rates of omeprazole on voriconazole had no significantly differences between CYP2C19*1 and *2 (681G>A). But the IC50 of omeprazole on CYP2C19*1 slightly lower than CYP2C19*2 (681G>A).Moreover, omeprazole inhibited CYP2C19 protein level in cells carrying CYP2C19*1 and CYP2C19*2 (681G>A). Our study demonstrated that omeprazole could inhibit voriconazole metabolism in both CYP2C19*1 and CYP2C19*2 (681G>A).
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming, China
- Clinical Pharmacy Center of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Li T, Zhou S, Wang L, Zhao T, Wang J, Shao F. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn 2024; 51:367-384. [PMID: 38554227 DOI: 10.1007/s10928-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.
Collapse
Affiliation(s)
- Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Kaehler M, von Bubnoff N, Cascorbi I, Gorantla SP. Molecular biomarkers of leukemia: convergence-based drug resistance mechanisms in chronic myeloid leukemia and myeloproliferative neoplasms. Front Pharmacol 2024; 15:1422565. [PMID: 39104388 PMCID: PMC11298451 DOI: 10.3389/fphar.2024.1422565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Leukemia represents a diverse group of hematopoietic neoplasms that can be classified into different subtypes based on the molecular aberration in the affected cell population. Identification of these molecular classification is required to identify specific targeted therapeutic approaches for each leukemic subtype. In general, targeted therapy approaches achieve good responses in some leukemia subgroups, however, resistance against these targeted therapies is common. In this review, we summarize molecular drug resistance biomarkers in targeted therapies in BCR::ABL1-driven chronic myeloid leukemia (CML) and JAK2-driven myeloproliferative neoplasms (MPNs). While acquisition of secondary mutations in the BCR::ABL1 kinase domain is the a common mechanism associated with TKI resistance in CML, in JAK2-driven MPNs secondary mutations in JAK2 are rare. Due to high prevalence and lack of specific therapy approaches in MPNs compared to CML, identification of crucial pathways leading to inhibitor persistence in MPN model is utterly important. In this review, we focus on different alternative signaling pathways activated in both, BCR::ABL1-mediated CML and JAK2-mediated MPNs, by combining data from in vitro and in vivo-studies that could be used as potential biomarkers of drug resistance. In a nutshell, some common similarities, especially activation of PDGFR, Ras, PI3K/Akt signaling pathways, have been demonstrated in both leukemias. In addition, induction of the nucleoprotein YBX1 was shown to be involved in TKI-resistant JAK2-mediated MPN, as well as TKI-resistant CML highlighting deubiquitinating enzymes as potential biomarkers of TKI resistance. Taken together, whole exome sequencing of cell-based or patients-derived samples are highly beneficial to define specific resistance markers. Additionally, this might be helpful for the development of novel diagnostic tools, e.g., liquid biopsy, and novel therapeutic agents, which could be used to overcome TKI resistance in molecularly distinct leukemia subtypes.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
8
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
9
|
Gong C, Feng Y, Zhu J, Liu G, Tang Y, Li W. Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition. J Appl Toxicol 2024; 44:1050-1066. [PMID: 38544296 DOI: 10.1002/jat.4601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 07/21/2024]
Abstract
Cytochrome P450 (CYP) enzymes are involved in the metabolism of approximately 75% of marketed drugs. Inhibition of the major drug-metabolizing P450s could alter drug metabolism and lead to undesirable drug-drug interactions. Therefore, it is of great significance to explore the inhibition of P450s in drug discovery. Currently, machine learning including deep learning algorithms has been widely used for constructing in silico models for the prediction of P450 inhibition. These models exhibited varying predictive performance depending on the use of machine learning algorithms and molecular representations. This leads to the difficulty in the selection of appropriate models for practical use. In this study, we systematically evaluated the conventional machine learning and deep learning models for three major P450 enzymes, CYP3A4, CYP2D6, and CYP2C9 from several perspectives, such as algorithms, molecular representation, and data partitioning strategies. Our results showed that the XGBoost and CatBoost algorithms coupled with the combined fingerprint/physicochemical descriptor features exhibited the best performance with Area Under Curve (AUC) of 0.92, while the deep learning models were generally inferior to the conventional machine learning models (average AUC reached 0.89) on the same test sets. We also found that data volume and sampling strategy had a minor effect on model performance. We anticipate that these results are helpful for the selection of molecular representations and machine learning/deep learning algorithms in the P450 model construction and the future model development of P450 inhibition.
Collapse
Affiliation(s)
- Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jieyu Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Fang J, Shen S, Wang H, He Y, Chao L, Cao Y, Chen X, Zhu Z, Hong Z, Chai Y. High-throughput BCRP inhibitors screening system based on styrene maleic acid polymer membrane protein stabilization strategy and surface plasmon resonance biosensor. Talanta 2024; 274:125987. [PMID: 38552478 DOI: 10.1016/j.talanta.2024.125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Multidrug resistance (MDR) is a dominant challenge in cancer chemotherapy failure. The over-expression of breast cancer resistance protein (BCRP) in tumorous cells, along with its extensive substrate profile, is a leading cause of tumor MDR. Herein, on the basis of styrene maleic acid (SMA) polymer membrane protein stabilization strategy and surface plasmon resonance (SPR) biosensor, a novel high-throughput screening (HTS) system for BCRP inhibitors has been established. Firstly, LLC-PK1 and LLC-PK1/BCRP cell membranes were co-incubated with SMA polymers to construct SMA lipid particles (SMALPs). PK1-SMALPs were thus immobilized in channel 1 of the L1 chip as the reference channel, and BCRP-SMALPs were immobilized in channel 2 as the detection channel to establish the BCRP-SMALPs-SPR screening system. The methodological investigation demonstrated that the screening system was highly specific and stable. Three active compounds were screened out from 26 natural products and their affinity constants with BCRP were determined. The KD of xanthotoxin, bergapten, and naringenin were 5.14 μM, 4.57 μM, and 3.72 μM, respectively. The in vitro cell verification experiments demonstrated that xanthotoxin, bergapten, and naringenin all significantly increased the sensitivity of LLC-PK1/BCRP cells to mitoxantrone with possessing reversal BCRP-mediated MDR activity. Collectively, the developed BCRP-SMALPs-SPR screening system in this study has the advantages of rapidity, efficiency, and specificity, providing a novel strategy for the in-depth screening of BCRP inhibitors with less side effects and higher efficacy.
Collapse
Affiliation(s)
- Jiahao Fang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yuzhen He
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
11
|
Zhao D, Huang P, Yu L, He Y. Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges. Clin Pharmacokinet 2024; 63:919-944. [PMID: 38888813 DOI: 10.1007/s40262-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Polypharmacy is commonly employed in clinical settings. The potential risks of drug-drug interactions (DDIs) can compromise efficacy and pose serious health hazards. Integrating pharmacokinetics (PK) and pharmacodynamics (PD) models into DDIs research provides a reliable method for evaluating and optimizing drug regimens. With advancements in our comprehension of both individual drug mechanisms and DDIs, conventional models have begun to evolve towards more detailed and precise directions, especially in terms of the simulation and analysis of physiological mechanisms. Selecting appropriate models is crucial for an accurate assessment of DDIs. This review details the theoretical frameworks and quantitative benchmarks of PK and PD modeling in DDI evaluation, highlighting the establishment of PK/PD modeling against a backdrop of complex DDIs and physiological conditions, and further showcases the potential of quantitative systems pharmacology (QSP) in this field. Furthermore, it explores the current advancements and challenges in DDI evaluation based on models, emphasizing the role of emerging in vitro detection systems, high-throughput screening technologies, and advanced computational resources in improving prediction accuracy.
Collapse
Affiliation(s)
- Di Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| |
Collapse
|
12
|
Wang M, Kuldharan S, Shenoy A, Reddy S, Rex K, Osgood T, Wahlstrom J, Dahal UP. Xenografted Tumors Share Comparable Fraction Unbound and Can Be Surrogated by Mouse Lung Tissue. Drug Metab Dispos 2024; 52:644-653. [PMID: 38670798 DOI: 10.1124/dmd.124.001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024] Open
Abstract
Free (unbound) drug concentration at the site of action is the key determinant of biologic activity since only unbound drugs can exert pharmacological and toxicological effects. Unbound drug concentration in tumors for solid cancers is needed to understand/explain/predict pharmacokinetics, pharmacodynamics, and efficacy relations. Fraction unbound (fu ) in tumors is usually determined across several xenografted tumors derived from various cell lines in the drug discovery stage, which is time consuming and a resource burden. In this study, we determined the fu values for a set of diverse compounds (comprising acid, base, neutral, zwitterion, and covalent drugs) across five different xenografted tumors and five commercially available mouse tissues to explore the correlation of fu between tumors and the possibility of surrogate tissue(s) for tumor fu (fu,tumor) determination. The crosstumor comparison showed that fu,tumor values across tumors are largely comparable, and systematic tissue versus tumor comparison demonstrated that only lung tissue had comparable fu to all five tumors (fu values within twofold change for >80% compounds in both comparisons). These results indicated that mouse lung tissue can be used as a surrogate matrix for a fu,tumor assay. This study will increase efficiency in fu,tumor assessment and reduce animal use (adapting the replace, reduce, and refine principle) in drug discovery. SIGNIFICANCE STATEMENT: The free drug concept is a well accepted principle in drug discovery research. Currently, tumor fraction unbound (fu,tumor) is determined in several tumors derived from different cell lines to estimate free drug concentrations of a compound. The results from this study indicated that fu,tumor across xenografted tumors is comparable, and fu,tumor can be estimated using a surrogate tissue, mouse lung. The results will increase efficiency in fu,tumor assessment and reduce animal use in drug discovery.
Collapse
Affiliation(s)
- Min Wang
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Sandip Kuldharan
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Aravind Shenoy
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Satyanarayana Reddy
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Karen Rex
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Jan Wahlstrom
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| |
Collapse
|
13
|
Imai H, Oikawa I, Koyama T, Matsuki S. Effects of rifampicin on the pharmacokinetics and safety of carotegrast methyl in healthy subjects: A randomized 2 × 2 crossover study. Br J Clin Pharmacol 2024; 90:1395-1407. [PMID: 38408756 DOI: 10.1111/bcp.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
AIMS To evaluate the effect of the combination of carotegrast methyl with rifampicin, a potent inhibitor of organic anion transporter polypeptide, on the pharmacokinetics (PKs), safety and tolerability of carotegrast methyl. METHODS In this 2 × 2 crossover study in 20 healthy Japanese adults, 10 subjects received carotegrast methyl 960 mg and rifampicin 600 mg on day 1 and received carotegrast methyl 960 mg on day 8. The subjects in the other sequence received the same treatments but in the opposite order. The 90% confidence interval (CI) of the geometric mean ratio of the Cmax and AUC0-t for carotegrast, the main active metabolite of carotegrast methyl, with/without rifampicin was calculated. If the 90% CI fell within the range of 0.80-1.25, this indicated the absence of any drug-drug interaction. Adverse events (AEs) were monitored. RESULTS The geometric mean ratios (90% CI) of the Cmax and AUC0-t for carotegrast with/without rifampicin were 4.78 (3.64-6.29) and 5.59 (4.60-6.79), respectively, indicating that carotegrast has a PK interaction with rifampicin. The combination with rifampicin increased the exposure of carotegrast and also that of its metabolites. The incidence of any AEs with/without rifampicin was five (25.0%) and one (5.0%), respectively. CONCLUSIONS Coadministration of carotegrast methyl with rifampicin significantly increased the exposure of carotegrast compared with carotegrast methyl administration alone. In this single dose study, the incidence of AEs of carotegrast methyl with rifampicin increased compared with carotegrast methyl alone, but the incidence of adverse drug reactions did not increase with combination administration.
Collapse
Affiliation(s)
- Hiromitsu Imai
- Department of Medical Ethics, Oita University Faculty of Medicine, Oita, Japan
| | - Ichiro Oikawa
- Clinical Development Department, EA Pharma Co., Ltd., Tokyo, Japan
| | - Tetsuya Koyama
- Clinical Development Department, EA Pharma Co., Ltd., Tokyo, Japan
| | - Shunji Matsuki
- Department of Clinical Research Center, Souseikai Fukuoka Mirai Hospital, Fukuoka, Japan
| |
Collapse
|
14
|
Kulkarni CP, Yang J, Koleske ML, Lara G, Alam K, Raw A, Rege B, Zhao L, Lu D, Zhang L, Yu LX, Lionberger RA, Giacomini KM, Kroetz DL, Yee SW. Effect of Antioxidants in Medicinal Products on Intestinal Drug Transporters. Pharmaceutics 2024; 16:647. [PMID: 38794309 PMCID: PMC11124870 DOI: 10.3390/pharmaceutics16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.
Collapse
Affiliation(s)
- Chetan P. Kulkarni
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Khondoker Alam
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Andre Raw
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Bhagwant Rege
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Liang Zhao
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Dongmei Lu
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Lei Zhang
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Lawrence X. Yu
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Robert A. Lionberger
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Seo JI, Jin GW, Yoo HH. Pharmacokinetic considerations for enhancing drug repurposing opportunities of anthelmintics: Niclosamide as a case study. Biomed Pharmacother 2024; 173:116394. [PMID: 38461686 DOI: 10.1016/j.biopha.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, anthelmintics have showcased versatile therapeutic potential in addressing various diseases, positioning them as promising candidates for drug repurposing. However, challenges such as low bioavailability and a lack of a solid pharmacokinetic basis impede successful repurposing. To overcome these flaws, we aimed to investigate the key pharmacokinetic factors of anthelmintics mainly focusing on the absorption, distribution, and metabolism profiles by employing niclosamide (NIC) as a model drug. The intestinal permeability of NIC is significantly influenced by solubility and doesn't function as a substrate for efflux transporters. It showed high plasma protein binding. Also, the metabolism study indicated that NIC would have low metabolic stability by extensively undergoing the intestinal glucuronidation. Additionally, we investigated the CYP-mediated drug-drug interaction potential of NIC in both direct and time-dependent ways. NIC showed strong inhibitory effects on CYP1A2 and CYP2C8 and is not likely to become a time-dependent inhibitor. Our findings could contribute to the identification of essential factors in the pharmacokinetics of anthelmintics, potentially facilitating their repositioning.
Collapse
Affiliation(s)
- Jeong In Seo
- Pharmacomicrobiomics Research Center and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Geun-Woo Jin
- R&D Center CnPharm Co. LTD, Seoul 03759, South Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea.
| |
Collapse
|
16
|
Lee JM, Yoon JH, Maeng HJ, Kim YC. Physiologically Based Pharmacokinetic (PBPK) Modeling to Predict CYP3A-Mediated Drug Interaction between Saxagliptin and Nicardipine: Bridging Rat-to-Human Extrapolation. Pharmaceutics 2024; 16:280. [PMID: 38399334 PMCID: PMC10892660 DOI: 10.3390/pharmaceutics16020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to predict the cytochrome P450 3A (CYP3A)-mediated drug-drug interactions (DDIs) between saxagliptin and nicardipine using a physiologically based pharmacokinetic (PBPK) model. Initially, in silico and in vitro parameters were gathered from experiments or the literature to construct PBPK models for each drug in rats. These models were integrated to predict the DDIs between saxagliptin, metabolized via CYP3A2, and nicardipine, exhibiting CYP3A inhibitory activity. The rat DDI PBPK model was completed by optimizing parameters using experimental rat plasma concentrations after co-administration of both drugs. Following co-administration in Sprague-Dawley rats, saxagliptin plasma concentration significantly increased, resulting in a 2.60-fold rise in AUC, accurately predicted by the rat PBPK model. Subsequently, the workflow of the rat PBPK model was applied to humans, creating a model capable of predicting DDIs between the two drugs in humans. Simulation from the human PBPK model indicated that nicardipine co-administration in humans resulted in a nearly unchanged AUC of saxagliptin, with an approximate 1.05-fold change, indicating no clinically significant changes and revealing a lack of direct translation of animal interaction results to humans. The animal-to-human PBPK model extrapolation used in this study could enhance the reliability of predicting drug interactions in clinical settings where DDI studies are challenging.
Collapse
Affiliation(s)
- Jeong-Min Lee
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Republic of Korea;
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - Yu Chul Kim
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Republic of Korea;
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
17
|
Jin YW, Ma YR, Zhang MK, Xia WB, Yuan P, Li BX, Wei YH, Wu XA. Identification and characterization of endogenous biomarkers for hepatic vectorial transport (OATP1B3-P-gp) function using metabolomics with serum pharmacology. Amino Acids 2024; 56:11. [PMID: 38319413 PMCID: PMC10847190 DOI: 10.1007/s00726-023-03363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.
Collapse
Affiliation(s)
- Yong-Wen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | | | - Wen-Bin Xia
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Pei Yuan
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Xia Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yu-Hui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xin-An Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
18
|
Yumoto Y, Endo T, Harada H, Kobayashi K, Nakabayashi T, Abe Y. High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry. Xenobiotica 2024; 54:45-56. [PMID: 38265764 DOI: 10.1080/00498254.2024.2308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
Collapse
Affiliation(s)
- Yu Yumoto
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takeshi Nakabayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| |
Collapse
|
19
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
20
|
Rysz MA, Kinzi J, Schäfer AM, In-Albon K, Zürcher S, Schmidlin S, Seibert I, Schwardt O, Ricklin D, Meyer Zu Schwabedissen HE. Simultaneous quantification of atorvastatin, erlotinib and OSI-420 in rat serum and liver microsomes using a novel liquid chromatography-mass spectrometry method. J Pharm Biomed Anal 2023; 236:115716. [PMID: 37722165 DOI: 10.1016/j.jpba.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Erlotinib is an epidermal growth factor receptor tyrosine kinase inhibitor used in the treatment of cancer. Atorvastatin is a statin commonly applied to treat hypercholesterolemia. In humans, both compounds are metabolized by CYP3A4 and are transported by OATP2B1, ABCB1 and ABCG2. We aimed to generate and validate a bioanalytical method for simultaneous determination of atorvastatin, erlotinib and its major metabolite OSI-420 applicable to biological samples. Quantification of erlotinib, OSI-420, and atorvastatin was achieved with an Agilent high-performance liquid chromatography system 1100/1200 coupled to a triple quadrupole G6410B. The method involved separation over the column Kinetex C8 (100 × 3 mm, 2.6 µm) using 2 mM ammonium acetate (pH 4.0) and acetonitrile as eluent. The method was assessed for selectivity, accuracy, recovery, matrix effect, and stability over a range from 1 to 4,000 ng/mL according to the respective guidelines. We applied the bioanalytical method to quantify the formation of OSI-420 in liver microsomes isolated from male and female Wistar rats. The optimized experiment revealed slower formation in microsomes of female compared to male rats, in which we observed lower amounts of CYP3A1 by Western blot analysis. Moreover, the presence of atorvastatin inhibited the CYP3A-mediated metabolism of erlotinib. Serum obtained from a drug-drug interaction study performed in male rats was also analyzed using the validated method. Non-compartmental pharmacokinetic analysis revealed a lower clearance of erlotinib when atorvastatin was co-administered. However, for atorvastatin we observed a lower systemic exposure in presence of erlotinib. In summary, we report a method to detect OSI-420, erlotinib and atorvastatin applicable to samples from ex vivo and in vivo studies.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simone Zürcher
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
21
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
22
|
Ding Y, Liu H, Wang F, Fu L, Zhu H, Fu S, Wang N, Zhuang X, Lu Y. Coadministration of bedaquiline and pyrifazimine reduce exposure to toxic metabolite N-desmethyl bedaquiline. Front Pharmacol 2023; 14:1154780. [PMID: 37860115 PMCID: PMC10582325 DOI: 10.3389/fphar.2023.1154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background: A new, effective anti-tuberculosis (TB) regimen containing bedaquiline (BDQ) and pyrifazimine (TBI-166) has been recommended for a phase IIb clinical trial. Preclinical drug-drug interaction (DDI) studies of the combination of BDQ and TBI-166 have been designed to support future clinical trials. In this study, we investigated whether a DDI between BDQ and TBI-166 affects the pharmacokinetics of BDQ. Methods: We performed in vitro quantification of the fractional contributions of the fraction of drug metabolism by individual CYP enzymes (f m) of BDQ and the inhibition potency of key metabolic pathways of TBI-166. Furthermore, we conducted an in vivo steady-state pharmacokinetics study in a murine TB model and healthy BALB/c mice. Results: The in vitro f m value indicated that the CYP3A4 pathway contributed more than 75% to BDQ metabolism to N-desmethyl-bedaquiline (M2), and TBI-166 was a moderate (IC50 2.65 µM) potential CYP3A4 inhibitor. Coadministration of BDQ and TBI-166 greatly reduced exposure to metabolite M2 (AUC0-t 76310 vs 115704 h ng/mL, 66% of BDQ alone), whereas the exposure to BDQ and TBI-166 did not changed. The same trend was observed both in healthy and TB model mice. The plasma concentration of M2 decreased significantly after coadministration of BDQ and TBI-166 and decreased further during treatment in the TB model. Conclusions: In conclusion, our results showed that the combination of BDQ and TBI-166 significantly reduced exposure to the toxic metabolite M2 by inhibiting the activity of the CYP3A4 pathway. The potential safety and efficacy benefits demonstrated by the TB treatment highly suggest that coadministration of BDQ and TBI-166 should be studied further.
Collapse
Affiliation(s)
- Yangming Ding
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Haiting Liu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hui Zhu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shuang Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wang
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Liang N, Zhou S, Li T, Zhang Z, Zhao T, Li R, Li M, Shao F, Wang G, Sun J. Physiologically based pharmacokinetic modeling to assess the drug-drug interactions of anaprazole with clarithromycin and amoxicillin in patients undergoing eradication therapy of H. pylori infection. Eur J Pharm Sci 2023; 189:106534. [PMID: 37480962 DOI: 10.1016/j.ejps.2023.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This study aimed to assess the pharmacokinetic (PK) interactions of anaprazole, clarithromycin, and amoxicillin using physiologically based pharmacokinetic (PBPK) models. METHODS The PBPK models for anaprazole, clarithromycin, and amoxicillin were constructed using the GastroPlus™ software (Version 9.7) based on the physicochemical data and PK parameters obtained from literature, then were optimized and validated in healthy subjects to predict the plasma concentration-time profiles of these three drugs and assess the predictive performance of each model. According to the analysis of the properties of each drug, the developed and validated models were applied to evaluate potential drug-drug interactions (DDIs) of anaprazole, clarithromycin, and amoxicillin. RESULTS The developed PBPK models properly described the pharmacokinetics of anaprazole, clarithromycin, and amoxicillin well, and all predicted PK parameters (Cmax,ss, AUC0-τ,ss) ratios were within 2.0-fold of the observed values. Furthermore, the application of these models to predict the anaprazole-clarithromycin and anaprazole-amoxicillin DDIs demonstrates their good performance, with the predicted DDI Cmax,ss ratios and DDI AUC0-τ,ss ratios within 1.25-fold of the observed values, and all predicted DDI Cmax,ss, and AUC0-τ,ss ratios within 2.0-fold. The simulated results show no need to adjust the dosage when co-administered with anaprazole in patients undergoing eradication therapy of H. pylori infection since the dose remained in the therapeutic range. CONCLUSION The whole-body PBPK models of anaprazole, clarithromycin, and amoxicillin were built and qualified, which can predict DDIs that are mediated by gastric pH change and inhibition of metabolic enzymes, providing a mechanistic understanding of the DDIs observed in the clinic of clarithromycin, amoxicillin with anaprazole.
Collapse
Affiliation(s)
- Ningxia Liang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Li
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zeru Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tangping Zhao
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Run Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingfeng Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Shao
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianguo Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Kotliarova MS, Shchulkin AV, Erokhina PD, Mylnikov PY, Yakusheva EN, Nadolinskaia NI, Zamakhaev MV, Goncharenko AV. Generation of a Cell Line Selectively Producing Functionally Active OATP1B1 Transporter. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1267-1273. [PMID: 37770393 DOI: 10.1134/s0006297923090067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The solute carrier organic anion transporter family member, OATP1B1, is one of the most important transporter proteins, which mediate penetration of many endogenous substances and xenobiotics into hepatocytes. A model system providing expression of the functional protein is needed to assess interaction of OATP1B1 with various substances. Based on the HEK293 cells, we obtained the HEK293-OATP1B1 cell line, constitutively expressing the SLCO1B1 gene encoding the OATP1B1 transporter. Expression of the SLCO1B1 gene was confirmed by real-time PCR analysis and Western blotting. Functionality of the transporter was assessed by the transport of atorvastatin, which is a substrate of OATP1B1. Cells of the resulting cell line, which selectively express the functionally active recombinant OATP1B1 transporter, can be used to study functions of the protein and to test drugs for being substrates, inducers, and inhibitors of OATP1B1, and to assess the risks of drug interactions.
Collapse
Affiliation(s)
- Mariia S Kotliarova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | | | | - Nonna I Nadolinskaia
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail V Zamakhaev
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna V Goncharenko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
25
|
Li L, Lu Z, Liu G, Tang Y, Li W. Machine Learning Models to Predict Cytochrome P450 2B6 Inhibitors and Substrates. Chem Res Toxicol 2023; 36:1332-1344. [PMID: 37437120 DOI: 10.1021/acs.chemrestox.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cytochrome P450 2B6 (CYP2B6) is responsible for the metabolism of ∼7% of marketed drugs. The in vitro drug interaction studies guidance for industry issued by the FDA stipulates that drug sponsors need to evaluate whether the investigated drugs interact with the major drug-metabolizing P450s including CYP2B6. Therefore, there has been greater attention to the development of predictive models for CYP2B6 inhibitors and substrates. In this study, conventional machine learning and deep learning models were developed to predict CYP2B6 inhibitors and substrates. Our results showed that the best CYP2B6 inhibitor model yielded the AUC values of 0.95 and 0.75 with the 10-fold cross-validation and the test set, respectively, and the best CYP2B6 substrate model produced the AUC values of 0.93 and 0.90 with the 10-fold cross-validation and the test set, respectively. The generalization ability of the CYP2B6 inhibitor and substrate models was assessed by using the external validation sets. Several significant substructural fragments relevant to CYP2B6 inhibitors and substrates were detected via frequency substructure analysis and information gain. In addition, the applicability domain of the models was defined by employing a nonparametric method based on the probability density distribution. We anticipate that our results would be useful for the prediction of potential CYP2B6 inhibitors and substrates in the early stage of drug discovery.
Collapse
Affiliation(s)
- Longqiang Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Bi Y, Xing Y, Gui C, Tian Y, Zhang M, Yao Y, Hu G, Han L, He F, Zhang Y. Potential Involvement of Organic Anion Transporters in Drug Interactions with Shuganning Injection, a Traditional Chinese Patent Medicine. PLANTA MEDICA 2023; 89:940-951. [PMID: 37236232 DOI: 10.1055/a-2085-2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Mingzhe Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yao Yao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ge Hu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
27
|
Evangelista JE, Clarke DJB, Xie Z, Marino GB, Utti V, Jenkins SL, Ahooyi TM, Bologa CG, Yang JJ, Binder JL, Kumar P, Lambert CG, Grethe JS, Wenger E, Taylor D, Oprea TI, de Bono B, Ma'ayan A. Toxicology knowledge graph for structural birth defects. COMMUNICATIONS MEDICINE 2023; 3:98. [PMID: 37460679 PMCID: PMC10352311 DOI: 10.1038/s43856-023-00329-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Birth defects are functional and structural abnormalities that impact about 1 in 33 births in the United States. They have been attributed to genetic and other factors such as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth defects there are no known causes. METHODS To further characterize associations between small molecule compounds and their potential to induce specific birth abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on associations between birth defects, drugs, and genes. Specifically, we gathered data from drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect associations from genetic studies, drug- and preclinical-compound-induced gene expression changes in cell lines, known drug targets, genetic burden scores for human genes, and placental crossing scores for small molecules. RESULTS Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 preclinical small molecules for their potential to cross the placenta and induce birth defects, and identified >500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-based user interface available at https://maayanlab.cloud/reprotox-kg . This site enables users to explore the associations between birth defects, approved and preclinical drugs, and all human genes. CONCLUSIONS ReproTox-KG provides a resource for exploring knowledge about the molecular mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical small molecules to induce birth defects.
Collapse
Affiliation(s)
- John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vivian Utti
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sherry L Jenkins
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Taha Mohseni Ahooyi
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Cristian G Bologa
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jeremy J Yang
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessica L Binder
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Praveen Kumar
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jeffrey S Grethe
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Wenger
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tudor I Oprea
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bernard de Bono
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
29
|
Ouzounis S, Panagiotopoulos V, Bafiti V, Zoumpoulakis P, Cavouras D, Kalatzis I, Matsoukas MT, Katsila T. A Robust Machine Learning Framework Built Upon Molecular Representations Predicts CYP450 Inhibition: Toward Precision in Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37406257 PMCID: PMC10357106 DOI: 10.1089/omi.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Human cytochrome P450 (CYP450) enzymes play a crucial role in drug metabolism and pharmacokinetics. CYP450 inhibition can lead to toxicity, in particular when drugs are co-administered with other drugs and xenobiotics or in the case of polypharmacy. Predicting CYP450 inhibition is also important for rational drug discovery and development, and precision in drug repurposing. In this overarching context, digital transformation of drug discovery and development, for example, using machine and deep learning approaches, offers prospects for prediction of CYP450 inhibition through computational models. We report here the development of a majority-voting machine learning framework to classify inhibitors and noninhibitors for seven major human liver CYP450 isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). For the machine learning models reported herein, we employed interaction fingerprints that were derived from molecular docking simulations, thus adding an additional layer of information for protein-ligand interactions. The proposed machine learning framework is based on the structure of the binding site of isoforms to produce predictions beyond previously reported approaches. Also, we carried out a comparative analysis so as to identify which representation of test compounds (molecular descriptors, molecular fingerprints, or protein-ligand interaction fingerprints) affects the predictive performance of the models. This work underlines the ways in which the structure of the enzyme catalytic site influences machine learning predictions and the need for robust frameworks toward better-informed predictions.
Collapse
Affiliation(s)
- Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Vasilis Panagiotopoulos
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
| | - Ioannis Kalatzis
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
| | - Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
30
|
Zerdoug A, Le Vée M, Uehara S, Jamin A, Higuchi Y, Yoneda N, Lopez B, Chesné C, Suemizu H, Fardel O. Drug transporter expression and activity in cryopreserved human hepatocytes isolated from chimeric TK-NOG mice with humanized livers. Toxicol In Vitro 2023; 90:105592. [PMID: 37030647 DOI: 10.1016/j.tiv.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Chimeric mice with humanized liver are thought to represent a sustainable source of isolated human hepatocytes for in vitro studying detoxification of drugs in humans. Because drug transporters are now recognized as key-actors of the hepatic detoxifying process, the present study was designed to characterize mRNA expression and activity of main hepatic drug transporters in cryopreserved human hepatocytes isolated from chimeric TK-NOG mice and termed HepaSH cells. Such cells after thawing were shown to exhibit a profile of hepatic solute carrier (SLC) and ATP-binding cassette (ABC) drug transporter mRNA levels well correlated to those found in cryopreserved primary human hepatocytes or human livers. HepaSH cells used either as suspensions or as 24 h-cultures additionally displayed notable activities of uptake SLCs, including organic anion transporting polypeptides (OATPs), organic anion transporter 2 (OAT2) or sodium-taurocholate co-transporting polypeptide (NTCP). SLC transporter mRNA expression, as well as SLC activities, nevertheless fell in HepaSH cells cultured for 120 h, which may reflect a partial dedifferentiation of these cells with time in culture in the conventional monolayer culture conditions used in the study. These data therefore support the use of cryopreserved HepaSH cells as either suspensions or short-term cultures for drug transport studies.
Collapse
Affiliation(s)
- Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; Biopredic International, F-35760 Saint Grégoire, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Shotaro Uehara
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Agnès Jamin
- Biopredic International, F-35760 Saint Grégoire, France
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | | | | | - Hiroshi Suemizu
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
31
|
Xing Y, Yu Q, Zhou L, Cai W, Zhang Y, Bi Y, Zhang Y, Fu Z, Han L. Cytochrome P450-mediated herb-drug interaction (HDI) of Polygonum multiflorum Thunb. based on pharmacokinetic studies and in vitro inhibition assays. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154710. [PMID: 36805481 DOI: 10.1016/j.phymed.2023.154710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polygonum multiflorum Thunb. (PM) is well known both in China and other countries of the world for its tonic properties, however, it has lost its former glory due to liver toxicity incidents in recent years. PURPOSE The purpose of this study is to determine whether the occurrence of herb-drug interaction (HDI) caused by PM is associated with cytochrome P450 (CYP450) based on pharmacokinetic studies and in vitro inhibition assays. The objective was to provide a reference for the rational and safe use of drugs in clinical practice. METHODS In this study, raw PM (R), together with its two processed products which included PM by Chinese Pharmacopoeia (M) and PM by "nine cycles of steaming and sunning (NCSS)" ("9"), were prepared as the main research objects. A method based on fluorescence technology was used to evaluate the inhibition levels of raw and processed PMs, as well as corresponding characteristic compounds on seven recombinant human cytochrome P450s (rhCYP450s). The pharmacokinetics of sulindac (a representative of commonly used nonsteroidal anti-inflammatory drugs) and psoralen (a major compound of Psoralea in combination with PM) in rat plasma were studied when combined with raw and different processed products of PM. RESULTS The inhibitory level order of the three extracts on major different subtypes of CYP450 (CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, and CYP3A4) was: R > M > "9". However, the inhibition level of R and "9" is higher than that of M on CYP2C9. Further studies showed that trans-THSG and emodin could selectively inhibit CYP3A4 and CYP1A2, respectively. Epicatechin gallate mainly inhibited CYP3A4 and CYP1A2, followed by CYP2C8 and CYP2C9. Genistein mainly inhibited CYP3A4, followed by CYP2C9 and CYP2C8. CYP3A4 and CYP2C9 were also inhibited by daidzein. The inhibitory effects of all the PM extracts were associated with their characteristic compounds. The results of HDI showed that R increased sulindac exposure to rat blood, and R and M increased psoralen exposure to rat blood, which were consistent with corresponding metabolic enzymes. Overall, the in vitro and in vivo results indicated that PM, especially R, would be at high risk to cause toxicity and drug interactions via CYP450 inhibition. CONCLUSION This study not only elucidates the scientific connotation of "efficiency enhancement and toxicity reduction" of PM by NCSS from the perspective of metabolic inhibition but also contributes to HDI prediction and appropriate clinical medication of PM.
Collapse
Affiliation(s)
- Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiao Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Cai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuxin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
32
|
Zhang J, Chen Y, Fan W, Li L, Ma Y, Wang Z, Shi R, Yang L. Study on herb-herb interaction between active components of Plantago asiatica L. seed and Coptis chinensis Franch. rhizoma based on transporters using UHPLC-MS/MS. J Pharm Biomed Anal 2023; 227:115234. [PMID: 36773541 DOI: 10.1016/j.jpba.2023.115234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
The combined efficacy in lowering serum lipid levels and increasing kidney protection of Plantago asiatica L. seed (Plantago) and Coptis chinensis Franch. rhizoma (Coptis) is far better than the effects of either herb alone. This finding suggests that there must be some degree of herb-herb interactions (HHI) affect potency. Here, we chose geniposidic acid (GPA), acteoside (ACT), and plantagoamidinic acid A (PLA) as active components in Plantago, and berberine (BBR) as the active component in Coptis, and, using transporter gene-transfected Madin-Darby canine kidney (MDCK) cells in combination with specific substrates and inhibitors, investigated Plantago- Coptis HHIs. We also established a UPLC-MS/MS analytical method to determine substrate content. Results showed that PLA in Plantago was a substrate of rOCT1/2 and rMATE1, and had inhibitory effects on rOCT2 and rMATE1. We also found that ACT is a substrate of rMATE1, but GPA was not a substrate of any transporter that we investigated. When BBR was used as the substrate, the inhibition rate of 10 μM PLA was 53.6% on rOCT2 and 31.5% on rMATE1. The inhibition rates of 30 μM ACT and 30 μM GPA on rMATE1 were 47.0% and 31.0%, respectively. Thus, our findings suggest that GPA, ACT, PLA, and BBR have competitive interactions that are driven by the rOCT2 and rMATE1 transporters. These interactions affect the transport and excretion of compounds and result in efficacy changes after co-administration.
Collapse
Affiliation(s)
- Jieyu Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxiang Fan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
33
|
Hu W, Zhang W, Zhou Y, Luo Y, Sun X, Xu H, Shi S, Li T, Xu Y, Yang Q, Qiu Y, Zhu F, Dai H. MecDDI: Clarified Drug-Drug Interaction Mechanism Facilitating Rational Drug Use and Potential Drug-Drug Interaction Prediction. J Chem Inf Model 2023; 63:1626-1636. [PMID: 36802582 DOI: 10.1021/acs.jcim.2c01656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Drug-drug interactions (DDIs) are a major concern in clinical practice and have been recognized as one of the key threats to public health. To address such a critical threat, many studies have been conducted to clarify the mechanism underlying each DDI, based on which alternative therapeutic strategies are successfully proposed. Moreover, artificial intelligence-based models for predicting DDIs, especially multilabel classification models, are highly dependent on a reliable DDI data set with clear mechanistic information. These successes highlight the imminent necessity to have a platform providing mechanistic clarifications for a large number of existing DDIs. However, no such platform is available yet. In this study, a platform entitled "MecDDI" was therefore introduced to systematically clarify the mechanisms underlying the existing DDIs. This platform is unique in (a) clarifying the mechanisms underlying over 1,78,000 DDIs by explicit descriptions and graphic illustrations and (b) providing a systematic classification for all collected DDIs based on the clarified mechanisms. Due to the long-lasting threats of DDIs to public health, MecDDI could offer medical scientists a clear clarification of DDI mechanisms, support healthcare professionals to identify alternative therapeutics, and prepare data for algorithm scientists to predict new DDIs. MecDDI is now expected as an indispensable complement to the available pharmaceutical platforms and is freely accessible at: https://idrblab.org/mecddi/.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Huimin Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Teng Li
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yichao Xu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qianqian Yang
- Department of Pharmacy, Affiliated Hangzhou First Peoples Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Feng Zhu
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Haibin Dai
- Department of Pharmacy, Center of Clinical Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
34
|
Lee CW, You BH, Yim S, Han SY, Chae HS, Bae M, Kim SY, Yu JE, Jung J, Nhoek P, Kim H, Choi HS, Chin YW, Kim HW, Choi YH. Change of metformin concentrations in the liver as a pharmacological target site of metformin after long-term combined treatment with ginseng berry extract. Front Pharmacol 2023; 14:1148155. [PMID: 36998615 PMCID: PMC10043734 DOI: 10.3389/fphar.2023.1148155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Metformin as an oral glucose-lowering drug is used to treat type 2 diabetic mellitus. Considering the relatively high incidence of cardiovascular complications and other metabolic diseases in diabetic mellitus patients, a combination of metformin plus herbal supplements is a preferrable way to improve the therapeutic outcomes of metformin. Ginseng berry, the fruit of Panax ginseng Meyer, has investigated as a candidate in metformin combination mainly due to its anti-hyperglycemic, anti-hyperlipidemic, anti-obesity, anti-hepatic steatosis and anti-inflammatory effects. Moreover, the pharmacokinetic interaction of metformin via OCTs and MATEs leads to changes in the efficacy and/or toxicity of metformin. Thus, we assessed how ginseng berry extract (GB) affects metformin pharmacokinetics in mice, specially focusing on the effect of the treatment period (i.e., 1-day and 28-day) of GB on metformin pharmacokinetics. In 1-day and 28-day co-treatment of metformin and GB, GB did not affect renal excretion as a main elimination route of metformin and GB therefore did not change the systemic exposure of metformin. Interestingly, 28-day co-treatment of GB increased metformin concentration in the livers (i.e., 37.3, 59.3% and 60.9% increases versus 1-day metformin, 1-day metformin plus GB and 28-day metformin groups, respectively). This was probably due to the increased metformin uptake via OCT1 and decreased metformin biliary excretion via MATE1 in the livers. These results suggest that co-treatment of GB for 28 days (i.e., long-term combined treatment of GB) enhanced metformin concentration in the liver as a pharmacological target tissue of metformin. However, GB showed a negligible impact on the systemic exposure of metformin in relation to its toxicity (i.e., renal and plasma concentrations of metformin).
Collapse
Affiliation(s)
- Choong Whan Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sreymom Yim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jeong-Eun Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jieun Jung
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Piseth Nhoek
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk-University Ilsan Oriental Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
- *Correspondence: Young Hee Choi,
| |
Collapse
|
35
|
Fang J, He Y, Cao Y, Shi Y, Wang H, Hong Z, Chai Y. Effect of P-Glycoprotein on the Blood-Brain Barrier Transport of the Major Active Constituents of Salvia miltiorrhiza Based on the MDCK-MDR1 Cell Model. ACS Chem Neurosci 2023; 14:766-772. [PMID: 36704945 DOI: 10.1021/acschemneuro.2c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a traditional Chinese medicine that has been widely used in the treatment of various central nervous system (CNS) diseases. However, the mechanism of active components of S. miltiorrhiza crossing the blood-brain barrier (BBB) stays unclear. The purpose of this study was to clarify the mechanism of four ingredients of S. miltiorrhiza, i.e., cryptotanshinone (CTS), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), and protocatechuic acid (PCTA) crossing the BBB using the in vitro model. The bidirectional transport of detectable components was tested using the MDCK-MDR1 monolayers. High performance liquid chromatography coupled to triple-quadrupole mass spectrometry (HPLC-QQQ/MS) was used to detect the content changes of S. miltiorrhiza monomer components transported through the BBB. Papp of CTS, DTS I, and TS IIA in the absorption direction were lower than 1.0 × 10-6 cm/s, suggesting that these components were poorly absorbed, while PCTA was moderately absorbed through the BBB. The efflux ratio (ER) of CTS, DTS I, TS IIA, and PCTA were 1.65, 0.92, 4.27, and 1.48, respectively. After treatment with P-gp inhibitor tariquidar, the efflux ratio (ER) of CTS, DTS I, and TS IIA significantly decreased from 1.65 to 1.27, 0.92 to 0.36, and 4.27 to 0.86 (P < 0.05), respectively, while the efflux ratio of PCTA decreased without significance from 1.48 to 0.80. This indicated that the transport of CTS, DTS I, and TS IIA might be related to P-gp. TS IIA and CTS were verified as the substrates of P-gp among the four components since the ER of TS IIA and CTS is greater than 1.5. For PCTA and DTS I, their transport mechanism may be related to other transport proteins or passive transport. The results were confirmed by molecular docking in our current work. In this study, an in vitro BBB model was established and applied to the trans-BBB study of active components in S. miltiorrhiza for the first time, which may provide a basis for further research on the mechanisms of other TCMs in treating CNS diseases and is of great significance in promoting the rational and effective use of TCMs.
Collapse
Affiliation(s)
- Jiahao Fang
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yuzhen He
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yuhong Cao
- Zhejiang Institute for Food and Drug Control, Hangzhou310057, China
| | - Yiwei Shi
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| |
Collapse
|
36
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
37
|
Drug-Drug Interactions: A Pharmacovigilance Road Less Traveled. Clin Ther 2023; 45:94-98. [PMID: 36641261 DOI: 10.1016/j.clinthera.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023]
|
38
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
39
|
Zhang Y, Zhang Q, Xu S, Zhang X, Gao W, Chen Y, Zhu Z. Association of volatile anesthesia exposure and depth with emergence agitation and delirium in children: Prospective observational cohort study. Front Pediatr 2023; 11:1115124. [PMID: 37033193 PMCID: PMC10076635 DOI: 10.3389/fped.2023.1115124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background Sevoflurane anesthesia is widely used in pediatric ambulatory surgery. However, emergency agitation (EA) and emergency delirium (ED), as major complications following sevoflurane anesthesia in children, pose risks to surgery and prognosis. Identifying the high risk of EA/ED, especially anesthesia exposure and the depth of anesthesia, may allow preemptive treatment. Methods A total of 137 patients were prospectively enrolled in this single-center observational cohort study to assess the incidence of EA or ED. Multivariable logistic regression analyses were used to test the association between volatile anesthesia exposure and depth with EA or ED. The Richmond Agitation and Sedation Scale (RASS), Pediatric Anesthesia Emergence Delirium Scale (PAED) and Face, Legs, Activity, Cry, and Consolability (FLACC) behavioural pain scale was used to assess the severity of EA or ED severity and pain. Bispectral index (BIS) to monitor the depth of anesthesia, as well as TimeLOW-BIS/TimeANES %, EtSevo (%) and EtSevo-time AUC were included in the multivariate logistic regression model as independent variables to analyze their association with EA or ED. Results The overall prevalence of EA and ED was 73/137 (53.3%) and 75/137 (54.7%) respectively, where 48/137 (35.0%), 19/137 (13.9%), and 6/137 (4.4%) had mild, moderate, and severe EA. When the recovery period was lengthened, the prevalence of ED and extent of FLACC decreased and finally normalized within 30 min in recovered period. Multivariable logistic regression demonstrated that intraoperative agitation [2.84 (1.08, 7.47) p = 0.034], peak FLACC [2.56 (1.70, 3.85) p < 0.001] and adverse event (respiratory complications) [0.03 (0.00, 0.29) p = 0.003] were independently associated with higher odds of EA. Taking EtSevo-time AUC ≤ 2,000 as a reference, the incidence of EA were [15.84 (2.15, 116.98) p = 0.002] times and 16.59 (2.42, 113.83) p = 0.009] times for EtSevo-time AUC 2,500-3,000 and EtSevo-time AUC > 3,000, respectively. Peak FLACC [3.46 (2.13, 5.62) p < 0.001] and intraoperative agitation [5.61 (1.99, 15.86) p = 0.001] were independently associated with higher odds of developing ED. EtSevo (%), intraoperative BIS value and the percentage of the duration of anesthesia at different depths of anesthesia (BIS ≤ 40, BIS ≤ 30, BIS ≤ 20) were not associated with EA and ED. Conclusions For pediatrics undergoing ambulatory surgery where sevoflurane anesthesia was administered, EA was associated with surgical time, peak FLACC, respiratory complications, and "EtSevo-time AUC" with a dose-response relationship; ED was associated with peak FLACC and intraoperative agitation.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of ZunYi Medical University, Zunyi, China
| | - Qiuying Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of ZunYi Medical University, Zunyi, China
| | - Shan Xu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of ZunYi Medical University, Zunyi, China
| | - Xiaoxi Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of ZunYi Medical University, Zunyi, China
| | - Wenxu Gao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of ZunYi Medical University, Zunyi, China
- Correspondence: Zhaoqiong Zhu
| |
Collapse
|
40
|
Lin F, Lin X, Wang X, Mei G, Chen B, Yao H, Huang L. Inhibitory effect of Selaginella doederleinii hieron on human cytochrome P450. Front Pharmacol 2023; 14:1108867. [PMID: 36874034 PMCID: PMC9975586 DOI: 10.3389/fphar.2023.1108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed favorable anticancer potentials. However, the effect of SDEA on human cytochrome P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI) and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven CYP450 isoforms were investigated by using the established CYP450 cocktail assay based on LC-MS/MS. Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were determined as well. Then, the validated CYP450 cocktail assay was applied to test the inhibitory potential of SDEA and four constituents on CYP450 isoforms. Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 μg/ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 μg/ml). Among the four constituents, Amentoflavone had the highest content in the extract (13.65%) and strongest inhibitory effect (IC50 < 5 μM), especially for CYP2C9, CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and CYP3A. Palmatine inhibited CYP3A and had a weak inhibitory effect on CYP2E1. As for Delicaflavone, which has the potential to develop as an anti-cancer agent, showed no obvious inhibitory effect on CYP450 enzymes. Conclusion: Amentoflavone may be one of the main reasons for the inhibition of SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is more suitable to develop as a drug for clinical use, considering the low level of CYP450 metabolic inhibition.
Collapse
Affiliation(s)
- Fei Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guanghui Mei
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lingyi Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
Prospective Prediction of Dapaconazole Clinical Drug-Drug Interactions Using an In Vitro to In Vivo Extrapolation Equation and PBPK Modeling. Pharmaceuticals (Basel) 2022; 16:ph16010028. [PMID: 36678526 PMCID: PMC9861162 DOI: 10.3390/ph16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study predicted dapaconazole clinical drug−drug interactions (DDIs) over the main Cytochrome P450 (CYP) isoenzymes using static (in vitro to in vivo extrapolation equation, IVIVE) and dynamic (PBPK model) approaches. The in vitro inhibition of main CYP450 isoenzymes by dapaconazole in a human liver microsome incubation medium was evaluated. A dapaconazole PBPK model (Simcyp version 20) in dogs was developed and qualified using observed data and was scaled up for humans. Static and dynamic models to predict DDIs following current FDA guidelines were applied. The in vitro dapaconazole inhibition was observed for all isoforms investigated, including CYP1A2 (IC50 of 3.68 µM), CYP2A6 (20.7 µM), 2C8 (104.1 µM), 2C9 (0.22 µM), 2C19 (0.05 µM), 2D6 (0.87 µM), and 3A4 (0.008−0.03 µM). The dynamic (PBPK) and static DDI mechanistic model-based analyses suggest that dapaconazole is a weak inhibitor (AUCR > 1.25 and <2) of CYP1A2 and CYP2C9, a moderate inhibitor (AUCR > 2 and <5) of CYP2C8 and CYP2D6, and a strong inhibitor (AUCR ≥ 5) of CYP2C19 and CYP3A, considering a clinical scenario. The results presented may be a useful guide for future in vivo and clinical dapaconazole studies.
Collapse
|
42
|
CRISPR/Cas9-induced knockout reveals the role of ABCB1 in the response to temozolomide, carmustine and lomustine in glioblastoma multiforme. Pharmacol Res 2022; 185:106510. [DOI: 10.1016/j.phrs.2022.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
43
|
Development and implementation of urinary transporter biomarkers to facilitate assessment of drug-drug interaction. Bioanalysis 2022; 14:971-984. [PMID: 36066071 DOI: 10.4155/bio-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Novel urinary biomarker evaluation approaches to support inhibition assessment for renal transporters (e.g., OCT2, multidrug and toxin extrusion proteins [MATEs]). Methods: Highly sensitive and robust hydrophilic interaction chromatography-MS/high-resolution MS assays, for urine and plasma, were developed and characterized to evaluate transporter biomarkers including N1-methyladenosine and N1-methylnicotinamide. Results: The assays were simple and reliable with good selectivity and sensitivity, and successfully supported a clinical drug-drug interaction study with a drug candidate that presented in vitro inhibition of OCT2 and MATEs. Conclusion: The multiplexed assays enable a performance comparison, including biomarker specificity and sensitivity, that should increase the confidence in early clinical OCT2/MATEs drug-drug interaction risk assessment.
Collapse
|
44
|
Granados JC, Bhatnagar V, Nigam SK. Blockade of Organic Anion Transport in Humans After Treatment With the Drug Probenecid Leads to Major Metabolic Alterations in Plasma and Urine. Clin Pharmacol Ther 2022; 112:653-664. [PMID: 35490380 PMCID: PMC9398954 DOI: 10.1002/cpt.2630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022]
Abstract
Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093
| | - Vibha Bhatnagar
- Department of Family Medicine, University of California San Diego, La Jolla, CA, 92093
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| |
Collapse
|
45
|
Kim JH, Sunwoo J, Song JH, Seo YB, Jung WT, Nam KY, Kim Y, Lee HJ, Moon J, Jung JG, Hong JH. Pharmacokinetic Interaction between Atorvastatin and Omega-3 Fatty Acid in Healthy Volunteers. Pharmaceuticals (Basel) 2022; 15:962. [PMID: 36015110 PMCID: PMC9415283 DOI: 10.3390/ph15080962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023] Open
Abstract
The interaction between statins and omega-3 fatty acids remains controversial. The aim of this phase 1 trial was to evaluate the pharmacokinetics of drug-drug interaction between atorvastatin and omega-3 fatty acids. Treatments were once-daily oral administrations of omega-3 (4 g), atorvastatin (40 mg), and both for 14 days, 7 days, and 14 days, respectively, with washout periods. The concentrations of atorvastatin, 2-OH-atorvastatin, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) were determined with LC-MS/MS. Parameters of DHA and EPA were analyzed after baseline correction. A total of 37 subjects completed the study without any major violations. The geometric mean ratios (GMRs) and 90% confidence intervals (CIs) of the co-administration of a single drug for the area under the concentration-time curve during the dosing interval at steady state of atorvastatin, 2-OH-atorvastatin, DHA, and EPA were 1.042 (0.971-1.118), 1.185 (1.113-1.262), 0.157 (0.091-0.271), and 0.557 (0.396-0.784), respectively. The GMRs (90% Cis) for the co-administration at steady state of atorvastatin, 2-OH-atorvastatin, DHA, and EPA were 1.150 (0.990-1.335), 1.301 (1.2707-1.1401), 0.320 (0.243-0.422), and 0.589 (0.487-0.712), respectively. The 90% CIs for most primary endpoints were outside the range of typical bioequivalence, indicating a pharmacokinetic interaction between atorvastatin and omega-3.
Collapse
Affiliation(s)
- Jae Hoon Kim
- Chungnam National University Hospital Clinical Trials Center, Daejeon 35015, Korea; (J.H.K.); (J.S.); (J.H.S.); (Y.-B.S.)
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jung Sunwoo
- Chungnam National University Hospital Clinical Trials Center, Daejeon 35015, Korea; (J.H.K.); (J.S.); (J.H.S.); (Y.-B.S.)
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
| | - Ji Hye Song
- Chungnam National University Hospital Clinical Trials Center, Daejeon 35015, Korea; (J.H.K.); (J.S.); (J.H.S.); (Y.-B.S.)
| | - Yu-Bin Seo
- Chungnam National University Hospital Clinical Trials Center, Daejeon 35015, Korea; (J.H.K.); (J.S.); (J.H.S.); (Y.-B.S.)
| | - Won Tae Jung
- Korea United Pharm., Inc., Seoul 06116, Korea; (W.T.J.); (K.-Y.N.); (Y.K.)
| | - Kyu-Yeol Nam
- Korea United Pharm., Inc., Seoul 06116, Korea; (W.T.J.); (K.-Y.N.); (Y.K.)
| | - YeSeul Kim
- Korea United Pharm., Inc., Seoul 06116, Korea; (W.T.J.); (K.-Y.N.); (Y.K.)
| | - Hye Jung Lee
- Caleb Multilab., Inc., Seoul 06745, Korea; (H.J.L.); (J.M.)
| | - JungHa Moon
- Caleb Multilab., Inc., Seoul 06745, Korea; (H.J.L.); (J.M.)
| | - Jin-Gyu Jung
- Department of Family Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Jang Hee Hong
- Chungnam National University Hospital Clinical Trials Center, Daejeon 35015, Korea; (J.H.K.); (J.S.); (J.H.S.); (Y.-B.S.)
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
46
|
Zhou J, Qian X, Zhou Y, Xiong S, Ji S, Wang Y, Zhao P. Human liver microsomes study on the inhibitory effect of plantainoside D on the activity of cytochrome P450 activity. BMC Complement Med Ther 2022; 22:197. [PMID: 35870998 PMCID: PMC9308932 DOI: 10.1186/s12906-022-03671-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plantainoside D is widely existed in the herbs and possesses various pharmacological activities, making it possible to co-administrate with other herbs. Its effect on cytochrome P450 enzymes (P450) is a risk factor for inducing adverse drug-drug interactions. To assess the effect of plantainoside D on the activity of major P450 isoenzymes in human liver microsomes. METHODS The Cocktail method was conducted in human liver microsomes in the presence of probe substrates. The activity of P450 isoenzymes was evaluated by the production of corresponding metabolites. The concentration-dependent and time-dependent inhibition assays were performed in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM plantainoside D to characterize the inhibitory effect of plantainoside D. RESULTS Significant inhibition was observed in the activity of CYP1A2, 2D6, and 3A, which was concentration-dependent with the IC50 values of 12.83, 8.39, and 14.66 μM, respectively. The non-competitive manner and competitive manner were observed in the CYP3A inhibition (Ki = 7.16 μM) and CYP1A2 (Ki = 6.26 μM) and 2D6 inhibition (Ki = 4.54 μM), respectively. Additionally, the inhibition of CYP3A was found to be time-dependent with the KI of 1.28 μM-1 and Kinact of 0.039 min-1. CONCLUSIONS Weak inhibitory effects of plantainoside D on the activity of CYP1A2, 2D6, and 3A were revealed in vitro, implying its potential of inducing interactions with CYP1A2-, 2D6-, and 3A-metabolized drugs. Although further in vivo validations are needed, the feasibility of the Cocktail method in evaluating P450 activity has been verified.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Shili Xiong
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Shuxia Ji
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Ping Zhao
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.
| |
Collapse
|
47
|
Younis IR, Manchandani P, Hassan HE, Qosa H. Trends in FDA Transporter-Based Post Marketing Requirements and Commitments Over the Last Decade. Clin Pharmacol Ther 2022; 112:635-642. [PMID: 35780478 DOI: 10.1002/cpt.2701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Characterizing interactions between new molecular entities (NMEs) and drug transporters is a critical element of drug development that helps in assessing potential transporter-based drug-drug interactions (DDIs). However, not all NME new drug applications (NDAs) include a full characterization of NMEs transporter-based DDI, which necessitates the issuance of post marketing requirement (PMR)/post marketing commitment (PMC) by the US Food and Drug Administration (FDA) to characterize these potential interactions. The objective of this analysis is to identify trends in transporter-based PMRs/PMCs issued by the FDA between 2012 and 2021. A decrease in the number of transporter-based PMRs/PMCs was observed from 2012 to 2016 and an increasing trend in the number of PMRs/PMCs was observed after 2017. The majority of these transporter-based PMRs/PMCs requested clinical evaluation (48%), some requested in vitro assessment (38%), and 2.5% requested modeling and simulation assessment. Most of the PMRs/PMCs requested evaluation of NMEs as perpetrator with the efflux transporters, P-gp and/or BCRP (53%). Forty-eight percent of the PMRs/PMCs were fulfilled with 67% resulted in labelling updates. On average 2.5 years were needed for the information related to PMRs/PMCs to show in NMEs labeling. In conclusion, this analysis highlights the increased emphasis from the FDA on proper characterization of transporter-based DDI and call for the need of early characterization of NMEs-transporters interaction before initial NDA approval.
Collapse
Affiliation(s)
- Islam R Younis
- Department of Clinical Pharmacology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Pooja Manchandani
- Clincial Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Hazem E Hassan
- School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
48
|
Li R, Zhou S, Gan Z, Wang L, Yu Y. The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats. Molecules 2022; 27:molecules27082594. [PMID: 35458793 PMCID: PMC9024597 DOI: 10.3390/molecules27082594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
TNBG-5602, a novel anticancer drug candidate, may induce the expression of PPARγ, causing targeted lipotoxicity in cancer tissues. In this study, the in vivo metabolism in rats, in vitro metabolism in recombinant cytochromes, molecular docking for the CYP binding site, and pharmacokinetics in rats were explored to better understand TNBG-5602's in vivo fate and behavior. Thirteen metabolites were identified using a high-resolution mass spectrometry method, and metabolizing pathways of TNBG-5602 were proposed. Results suggest that TNBG-5602 could be metabolized by CYP450s, while CYP2D6 may play an important role in its in vivo metabolism. The main metabolizing sites of TNBG-5602 are the amino group on the side chain and rings A and E in the molecule. TNBG-5602 is a potent CYP2D6 inhibitor, with an IC50 value of 2.52 μM. An interaction responsible for its metabolism is formed by the NH on the side chain bonding with the ASP301 on the CYP2D6. The pharmacokinetics in rats after a single intravenous administration were fitted to a two-compartment model. The clearance was 0.022 L min-1, and the elimination half-life was 710.9 min. The distribution volume of the peripheral compartment was 1.88-fold that of the central compartment, while the K12 was 1.5-fold that of K21. In conclusion, these studies have not only revealed the metabolizing pathways of TNBG-5602 using in vivo and in vitro methodology, but they have also provided the pharmacokinetic characteristics of TNBG-5602 in rats. The results suggest that TNBG-5602 has good drug developability in terms of pharmacokinetic behaviors.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (R.L.); (Z.G.)
| | - Sha Zhou
- Yaopharma Co., Ltd., Chongqing 401121, China;
| | - Zongjie Gan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (R.L.); (Z.G.)
| | - Lijuan Wang
- Department of Pharmaceutics, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Yu Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (R.L.); (Z.G.)
- Correspondence:
| |
Collapse
|
49
|
Grzegorzewski J, Bartsch F, Köller A, König M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front Pharmacol 2022; 12:752826. [PMID: 35280254 PMCID: PMC8914174 DOI: 10.3389/fphar.2021.752826] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Caffeine is by far the most ubiquitous psychostimulant worldwide found in tea, coffee, cocoa, energy drinks, and many other beverages and food. Caffeine is almost exclusively metabolized in the liver by the cytochrome P-450 enzyme system to the main product paraxanthine and the additional products theobromine and theophylline. Besides its stimulating properties, two important applications of caffeine are metabolic phenotyping of cytochrome P450 1A2 (CYP1A2) and liver function testing. An open challenge in this context is to identify underlying causes of the large inter-individual variability in caffeine pharmacokinetics. Data is urgently needed to understand and quantify confounding factors such as lifestyle (e.g., smoking), the effects of drug-caffeine interactions (e.g., medication metabolized via CYP1A2), and the effect of disease. Here we report the first integrative and systematic analysis of data on caffeine pharmacokinetics from 141 publications and provide a comprehensive high-quality data set on the pharmacokinetics of caffeine, caffeine metabolites, and their metabolic ratios in human adults. The data set is enriched by meta-data on the characteristics of studied patient cohorts and subjects (e.g., age, body weight, smoking status, health status), the applied interventions (e.g., dosing, substance, route of application), measured pharmacokinetic time-courses, and pharmacokinetic parameters (e.g., clearance, half-life, area under the curve). We demonstrate via multiple applications how the data set can be used to solidify existing knowledge and gain new insights relevant for metabolic phenotyping and liver function testing based on caffeine. Specifically, we analyzed 1) the alteration of caffeine pharmacokinetics with smoking and use of oral contraceptives; 2) drug-drug interactions with caffeine as possible confounding factors of caffeine pharmacokinetics or source of adverse effects; 3) alteration of caffeine pharmacokinetics in disease; and 4) the applicability of caffeine as a salivary test substance by comparison of plasma and saliva data. In conclusion, our data set and analyses provide important resources which could enable more accurate caffeine-based metabolic phenotyping and liver function testing.
Collapse
|
50
|
Wu Y, Qiao A, Lin S, Chen L. In vitro evaluation of the inhibition potential of echinacoside on human cytochrome P450 isozymes. BMC Complement Med Ther 2022; 22:46. [PMID: 35180866 PMCID: PMC8857812 DOI: 10.1186/s12906-022-03517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background Echinacoside (ECH) possesses a wide range of biological activity. This present study analyzes the effect of ECH on cytochrome P450 isozymes (CYPs) activities of human liver microsomes. Methods The effect of ECH on CYPs enzyme activities were studied using the enzyme-selective substrates phenacetin (1A2), chlorzoxazone (2E1), S-mephenytoin (2C19), testosterone (3A4), coumarin (2A6), diclofenac (2C9), paclitaxel (2C8), and dextromethorphan (2D6). The IC50 values for CYP1A2, CYP2E1, CYP2C19, and CYP3A4 isoforms were examined to express the strength of inhibition. Further, the inhibition of CYPs was checked for time-dependent or not, and then fitted with competitive or non-competitive inhibition models. The corresponding parameters were also obtained. Results ECH caused inhibitions on CYP1A2, CYP2E1, CYP2C19 and CYP3A4 enzyme activities in HLMs with IC50 of 21.23, 19.15, 8.70 and 55.42 μM, respectively. The obtained results showed that the inhibition of ECH on CYP3A4 was time-dependent with the KI/Kinact value of 6.63/0.066 min− 1·μM− 1. Moreover, ECH inhibited the activity of CYP1A2 and CYP2E1 via non-competitive manners (Ki = 10.90 μM and Ki = 14.40 μM, respectively), while ECH attenuated the CYP2C19 activity via a competitive manner (Ki = 4.41 μM). Conclusions The results of this study indicate that ECH inhibits CYP1A2, CYP2E1, CYP2C19 and CYP3A4 activities in vitro. In vivo and clinical studies are warranted to verify the relevance of these interactions.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Aiqing Qiao
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Shu Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Lijia Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|