1
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Sahu I, Chakraborty P. A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. Colloids Surf B Biointerfaces 2024; 233:113654. [PMID: 38000121 DOI: 10.1016/j.colsurfb.2023.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Peptide nanotechnology has currently bridged the gap between materials and biological worlds. Bioinspired self-assembly of short-peptide building blocks helps take the leap from molecules to materials by taking inspiration from nature. Owing to their intrinsic biocompatibility, high water content, and extracellular matrix mimicking fibrous morphology, hydrogels engineered from the self-assembly of short peptides exemplify the actualization of peptide nanotechnology into biomedical products. However, the weak mechanical property of these hydrogels jeopardizes their practical applications. Moreover, their functional diversity is limited since they comprise only one building block. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can augment the mechanical properties while retaining their dynamic supramolecular nature. These additives interact with the peptide building blocks supramolecularly and may enhance the branching of the networks via coassembly or crystallographic mismatch. This phenomenon expands the functional diversity of these hydrogels by synergistically combining the attributes of the individual building blocks. This review highlights such nanoengineered peptide hydrogels and their applications in biotechnology. We have included exemplary works on supramolecular modification of the peptide hydrogel networks by integrating other small molecules, synthetic/biopolymers, conductive polymers, and inorganic/carbon nanomaterials and shed light on their various utilities focusing on biotechnology. We finally envision some future prospects in this highly active field of research.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
3
|
Xiang H, Zhang Y, Wu Y, Xu Y, Hong Y. Aurantio-obtusin exerts an anti-inflammatory effect on acute kidney injury by inhibiting NF-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:11-19. [PMID: 38154960 PMCID: PMC10762489 DOI: 10.4196/kjpp.2024.28.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 12/30/2023]
Abstract
Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Haiyan Xiang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yun Zhang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yan Wu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yaling Xu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yuanhao Hong
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| |
Collapse
|
4
|
An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomater 2022; 149:82-95. [PMID: 35777549 DOI: 10.1016/j.actbio.2022.06.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and burst of inflammation following cardiac ischemia-reperfusion (I/R) are the leading causes of cardiomyocyte injury. Monotherapeutic strategies designed to enhance anti-inflammatory or anti-ROS activity explicitly for treating I/R injury have demonstrated limited success because of the complex mechanisms of ROS production and induction of inflammation. Intense oxidative stress leads to sustained injury, necrosis, and apoptosis of cardiomyocytes. The damaged and necrotic cells can release danger-associated molecular patterns (DAMPs) that can cause the aggregation of immune cells by activating Toll-like receptor 4 (TLR4). These immune cells also promote ROS production by expressing NADPH oxidase. Finally, ROS production and inflammation form a vicious cycle, and ROS and TLR4 are critical nodes of this cycle. In the present study, we designed and prepared an injectable hydrogel system of EGCG@Rh-gel by co-assembling epigallocatechin-3-gallate (EGCG) and the rhein-peptide hydrogel (Rh-gel). The co-assembled hydrogel efficiently blocked the ROS-inflammation cycle by ROS scavenging and TLR4 inhibition. Benefited by the abundant noncovalent interactions of π-π stacking and hydrogen bonding between EGCG and Rh-gel, the co-assembled hydrogel had good mechanical strength and injectable property. Following the injection EGCG@Rh-gel into the damaged region of the mice's heart after I/R, the hydrogel enabled to achieve long-term sustained release and treatment, improve cardiac function, and significantly reduce the formation of scarring. Further studies demonstrated that these beneficial outcomes arise from the reduction of ROS production, inhibition of inflammation, and induction of anti-apoptosis in cardiomyocytes. Therefore, EGCG@Rh-gel is a promising drug delivery system to block the ROS-inflammation cycle for resisting myocardial I/R injury. STATEMENT OF SIGNIFICANCE: 1. Monotherapeutic strategies designed to enhance anti-inflammatory or anti-ROS effects for treating I/R injury have demonstrated limited success because of the complex mechanisms of ROS and inflammation. 2. ROS production and inflammation form a vicious cycle, and ROS and TLR4 are critical nodes of this cycle. 3. Here, we designed an injectable hydrogel system of EGCG@Rh-gel by co-assembling epigallocatechin-3-gallate (EGCG) and a rhein-peptide hydrogel (Rh-gel). EGCG@Rh-gel efficiently blocked the ROS-inflammation cycle by ROS scavenging and TLR4 inhibition. 4. EGCG@Rh-gel achieved long-term sustained release and treatment, improved cardiac function, and significantly reduced the formation of scarring after I/R. 5. The beneficial outcomes arise from reducing ROS production, inhibiting inflammation, and inducing anti-apoptosis in cardiomyocytes.
Collapse
|
5
|
Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021; 225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023]
Abstract
The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Collapse
Affiliation(s)
- Jiancheng Mo
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ngoc Phuong Mai Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
6
|
Neuroprotective Effect of Aurantio-Obtusin, a Putative Vasopressin V 1A Receptor Antagonist, on Transient Forebrain Ischemia Mice Model. Int J Mol Sci 2021; 22:ijms22073335. [PMID: 33805177 PMCID: PMC8037569 DOI: 10.3390/ijms22073335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been a rich source of novel drug discovery, and Cassia seed is one of the common TCMs with numerous biological effects. Based on the existing reports on neuroprotection by Cassia seed extract, the present study aims to search possible pharmacological targets behind the neuroprotective effects of the Cassia seeds by evaluating the functional effect of specific Cassia compounds on various G-protein-coupled receptors. Among the four test compounds (cassiaside, rubrofusarin gentiobioside, aurantio-obtusin, and 2-hydroxyemodin 1-methylether), only aurantio-obtusin demonstrated a specific V1AR antagonist effect (71.80 ± 6.0% inhibition at 100 µM) and yielded an IC50 value of 67.70 ± 2.41 μM. A molecular docking study predicted an additional interaction of the hydroxyl group at C6 and a methoxy group at C7 of aurantio-obtusin with the Ser341 residue as functional for the observed antagonist effect. In the transient brain ischemia/reperfusion injury C57BL/6 mice model, aurantio-obtusin attenuated the latency time that was reduced in the bilateral common carotid artery occlusion (BCCAO) groups. Likewise, compared to neuronal damage in the BCCAO groups, treatment with aurantio-obtusin (10 mg/kg, p.o.) significantly reduced the severity of damage in medial cornu ammonis 1 (mCA1), dorsal CA1, and cortex regions. Overall, the findings of this study highlight V1AR as a possible target of aurantio-obtusin for neuroprotection.
Collapse
|
7
|
Zhang J, Cai W. New Methods and Technology in Drugs Metabolism and Pharmacokinetics. Curr Drug Metab 2021; 21:959. [PMID: 33413058 DOI: 10.2174/138920022112201207111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jiayu Zhang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, 260040, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 41800, China
| |
Collapse
|
8
|
Qin SH, Xu Y, Li KL, Gong KY, Peng J, Shi SL, Yan F, Cai W. Identification of Metabolites of Aurantio-Obtusin in Rats Using Ultra-High-Performance Liquid Chromatography-Q-Exactive Orbitrap Mass Spectrometry with Parallel Reaction Monitoring. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6630604. [PMID: 33936838 PMCID: PMC8062173 DOI: 10.1155/2021/6630604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
Aurantio-obtusin (AO) is a major anthraquinone compound isolated from Cassiae Semen or Duhaldea nervosa, which possesses diverse pharmacological effects. Previous studies have shown that it has a good effect on lowering blood lipids and treating various diseases. A few studies have also reported about its metabolites. A rapid and reliable method using ultra-high-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry and multiple data-processing technologies was established to investigate the metabolites of AO in the plasma and various tissues of rats, including the heart, liver, spleen, lung, kidneys, and brain. Finally, a total of 36 metabolites were identified in the plasma of rats, which could be very beneficial for understanding the effective form of AO metabolites leading to new drug discovery. The result demonstrated that this strategy, especially parallel reaction monitoring, has shown a wide range of applications in the identification of metabolites.
Collapse
Affiliation(s)
- Shi-han Qin
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Xu
- Department of TCM Rheumatism, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai-lin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Kai-yan Gong
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Jie Peng
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Si-lin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory of Antiboby-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|