1
|
Donadon M, Palmisano A, Bizzarri M, Ceriani R, Veneroni L, Donati G, Tassinari D, Viola MG, Tamburini E, Torzilli G. Impact of Oocyte Extract Supplement on Quality of Life after Hepatectomy for Liver Tumours: A Prospective, Multicentre, Double-Blind Randomized Clinical Trial. Cancers (Basel) 2023; 15:2809. [PMID: 37345146 DOI: 10.3390/cancers15102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Previous studies on oocyte extract supplementation showed benefits in patients with liver tumours. In this trial, we hypothesized that the oocyte extract supplement impacted the QoL after hepatectomy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. METHODS This was a multicentre, double-blind, randomized clinical trial designed to assess the QoL of patients receiving a supplement of oocyte extract or placebo postoperatively. QoL was assessed using the Short Form-36 questionnaire in participants randomly assigned to treatment (Synchrolevels) or placebo. All study personnel and participants were masked to treatment assignment. The endpoint was the change in the QoL score. RESULTS Between June 2018 and September 2022, 66 of 128 expected patients were considered as per interim analysis, of which 33 were assigned to the treatment and 33 to the placebo group. Baseline and clinicopathological characteristics were similar between the two groups. In the treatment group, the health, mental and psychological status improved for many of the items considered, reaching statistical significance, while in the placebo group, those items either did not change or were impaired in comparison with the corresponding baseline. CONCLUSIONS Supplementation with oocyte extract modifies QoL after liver surgery by enhancing functional recovery. Further in-depth studies are required to confirm this evidence.
Collapse
Affiliation(s)
- Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Angela Palmisano
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Roberto Ceriani
- Department of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Luigi Veneroni
- Department of General and Emergency Surgery, Infermi Hospital, Rimini AUSL Romagna, 47921 Rimini, Italy
| | - Gabriele Donati
- Department of Internal Medicine, Infermi Hospital, Rimini AUSL Romagna, 47921 Rimini, Italy
| | - Davide Tassinari
- Department of Oncology, Infermi Hospital, Rimini AUSL Romagna, 47921 Rimini, Italy
| | | | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale Panico Hospital, 73039 Tricase, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Italy
| |
Collapse
|
2
|
Gonzalez MJ, Kweh MF, Biava PM, Olalde J, Toro AP, Goldschmidt-Clermont PJ, White IA. Evaluation of exosome derivatives as bio-informational reprogramming therapy for cancer. J Transl Med 2021; 19:103. [PMID: 33750417 PMCID: PMC7944634 DOI: 10.1186/s12967-021-02768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Exosomes are nanoparticle sized (100 ± 50 nm) extracellular vesicles (ECVs) that play important roles in cell-to-cell communication. They do this by utilizing their natural ability to shuttle signaling molecules across the cellular microenvironment and promote paracrine signaling. Currently, exosomes are being explored for their potential as therapeutic agents for various degenerative diseases including cancer. The rationale behind their therapeutic ability is that they can transfer signaling biomolecules, and subsequently induce metabolic and physiological changes in diseased cells and tissues. In addition, exosomes can be used as a drug delivery system and may be very effective at reducing toxicity and increasing bioavailability of therapeutic molecules and drugs. Although exosomes were first believed to be a waste product of the cell, current research has demonstrated that these particles can serve as modulators of the immune system, act as cancer biomarkers, cause re-differentiation of cancer cells, and induce apoptosis in diseased cells. Extensive research has been performed specifically using amniotic fluid-derived extracellular vesicles, named "cytosomes". While the use of cytosomes in clinical application is still in the early stages, researchers have shown great potential for these EVs in regenerative medicine as immune modulators, in controlling microbial infection and by inducing tissue repair through the activation of endogenous, tissue-specific stem cells. This review emphasizes the capabilities of specific subsets of extracellular vesicles that can potentially be used for cancer therapy, principally as a source of bi-informational reprogramming for malignant cells.
Collapse
Affiliation(s)
- Michael J Gonzalez
- Medical Sciences Campus, School of Public Health, University of Puerto Rico, San Juan, Puerto Rico
- School of Medicine, Chiropractic Program, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Mercedes F Kweh
- Neobiosis, LLC, UF Innovate Biotech Building, Research Drive, Alachua, FL, 12085, USA
| | | | - Jose Olalde
- Centro Medicina Regenerativa (CMR), Bayamon, Puerto Rico
| | - Alondra P Toro
- Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | | | - Ian A White
- Neobiosis, LLC, UF Innovate Biotech Building, Research Drive, Alachua, FL, 12085, USA.
| |
Collapse
|
3
|
Nicolini A, Ferrari P, Biava PM. Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13040822. [PMID: 33669294 PMCID: PMC7920050 DOI: 10.3390/cancers13040822] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, within the research community, exosomes, transporters of bioactive molecules involved in many signalling pathways and cell-to-cell communication with the capacity to alter the tumour microenvironment, have been attracting increasing interest among oncologists. These molecules can play multiple roles, e.g., as useful biomarkers in diagnosis, modulators of the immune system, promoters of the formation of the pre-metastatic niches and cancer metastasis and carriers of substances or factors with anticancer properties. This review focuses on the use of exosomes as a novel therapeutic strategy for cancer treatment. Particularly, it highlights the potential of exosomes as carriers of stem cell differentiation stage factors (SCDSFs) for “cell reprogramming” therapy, a promising research field on which we have reported previously. Here, the main characteristics of this treatment and the advantages that can be obtained using mesenchymal stem cell-derived exosomes up-loaded with the SCDSFs as carriers of these factors are also discussed. Abstract Exosomes are nano-vesicle-shaped particles secreted by various cells, including cancer cells. Recently, the interest in exosomes among cancer researchers has grown enormously for their many potential roles, and many studies have focused on the bioactive molecules that they export as exosomal cargo. These molecules can function as biomarkers in diagnosis or play a relevant role in modulating the immune system and in promoting apoptosis, cancer development and progression. Others, considering exosomes potentially helpful for cancer treatment, have started to investigate them in experimental therapeutic trials. In this review, first, the biogenesis of exosomes and their main characteristics was briefly described. Then, the capability of tumour-derived exosomes and oncosomes in tumour microenvironments (TMEs) remodelling and pre-metastatic niche formation, as well as their interference with the immune system during cancer development, was examined. Finally, the potential role of exosomes for cancer therapy was discussed. Particularly, in addition, their use as carriers of natural substances and drugs with anticancer properties or carriers of boron neutron capture therapy (BNCT) and anticancer vaccines for immunotherapy, exosomes as biological reprogrammers of cancer cells have gained increased consensus. The principal aspects and the rationale of this intriguing therapeutic proposal are briefly considered.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology 1, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20099 Milan, Italy;
| |
Collapse
|
4
|
The Use of Stem Cell Differentiation Stage Factors (SCDSFs) Taken from Zebrafish Embryos during Organogenesis and Their Role in Regulating the Gene Expression of Normal and Pathological (Stem) Cells. Int J Mol Sci 2020; 21:ijms21144914. [PMID: 32664640 PMCID: PMC7404112 DOI: 10.3390/ijms21144914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
Studies conducted on Zebrafish embryos in our laboratory have allowed for the identification of precise moments of organogenesis in which a lot of genes are switched on and off, a sign that the genome is undergoing substantial changes in gene expression. Stem cell growth and differentiation stage-factors present in different moments of organogenesis have proven to have different specific functions in gene regulation. The substances present in the first stages of cell differentiation in Zebrafish embryos have demonstrated an ability to counteract the senescence of stem cells, reducing the expression of the beta-galactosidase marker, enhancing the genes Oct-4, Sox-2, c-Myc, TERT, and the transcription of Bmi-1, which act as key telomerase-independent repressors of cell aging. The molecules present in the intermediate to late stages of cell differentiation have proven to be able to reprogram pathological human cells, such as cancer cells and those of the basal layer of the epidermis in psoriasis, which present a higher multiplication rate than normal cells. The factors present in all the stages of cell differentiation are able to counteract neurodegeneration, and to regenerate tissues: It has been possible to regenerate hair follicles in many patients with androgenetic alopecia through transdermal administration of stem cell differentiation stage factors (SCDSFs) by means of cryopass-laser.
Collapse
|
5
|
Biava PM, Burigana F, Germano R, Kurian P, Verzegnassi C, Vitiello G. Stem Cell Differentiation Stage Factors and their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes. Curr Med Chem 2019; 26:988-1001. [PMID: 28933288 DOI: 10.2174/0929867324666170920142609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated redifferentiation often signifies the phenotypic reversion back to health and nonproliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality.
Collapse
Affiliation(s)
- P M Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300 Sesto S. G., Milano, Italy
| | - F Burigana
- Associazione Medicina e Complessita, Trieste, Italy
| | - R Germano
- PROMETE_CNR Spin off, Piazzale V. Tecchio, 45, Napoli, Italy
| | - P Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC, United States
| | - C Verzegnassi
- Politecnico di Ingegneria e Architettura, Universita di Udine, Udine, Italy and Associazione Medicina e Complessita, Trieste, Italy
| | - G Vitiello
- Dipartimento di Fisica "E.R.Caianiello" and Istituto Nazionale di Fisica Nucleare, Universita di Salerno, Fisciano, Italy
| |
Collapse
|
6
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
7
|
Proietti S, Cucina A, Pensotti A, Biava PM, Minini M, Monti N, Catizone A, Ricci G, Leonetti E, Harrath AH, Alwasel SH, Bizzarri M. Active Fraction from Embryo Fish Extracts Induces Reversion of the Malignant Invasive Phenotype in Breast Cancer through Down-regulation of TCTP and Modulation of E-cadherin/β-catenin Pathway. Int J Mol Sci 2019; 20:E2151. [PMID: 31052313 PMCID: PMC6539734 DOI: 10.3390/ijms20092151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/01/2022] Open
Abstract
Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-β1 stimulation. The reversion program involves the modulation of E-cadherin/β-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
- Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | | | - Pier Mario Biava
- Scientific Institute of Research and Health Care (IRCCS) Multimedica, 20099 Milano, Italy.
| | - Mirko Minini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, 00161 Rome, Italy.
| | - Noemi Monti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, 00161 Rome, Italy.
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Giulia Ricci
- Department. of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Erica Leonetti
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Mariano Bizzarri
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
8
|
Facchin F, Bianconi E, Canaider S, Basoli V, Biava PM, Ventura C. Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells Int 2018; 2018:7412035. [PMID: 30057626 PMCID: PMC6051063 DOI: 10.1155/2018/7412035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|