1
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03532-7. [PMID: 39453501 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Chen Y, Zhang L, Xu J, Xu S, Li Y, Sun R, Huang J, Peng J, Gong Z, Wang J, Tang L. Development of a hydroxypropyl methyl cellulose/polyacrylic acid interpolymer complex formulated buccal mucosa adhesive film to facilitate the delivery of insulin for diabetes treatment. Int J Biol Macromol 2024; 269:131876. [PMID: 38685543 DOI: 10.1016/j.ijbiomac.2024.131876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Buccal mucosa administration is a promising method for insulin (INS) delivery with good compliance. However, buccal mucosa delivery systems still face challenges of long-term mucosal adhesion, sustained drug release, and mucosal drug penetration. To address these issues, a double-layer film consisting of a hydroxypropyl methylcellulose/polyacrylic acid interpolymer complex (IPC)-formulated mucoadhesive layer and an ethylcellulose (EC)-formulated waterproof backing layer (IPC/EC film) was designed. Protamine (PTM) and INS were co-loaded in the mucoadhesive layer of the IPC/EC film (PTM-INS-IPC/EC film). In ex vivo studies with porcine buccal mucosa, this film exhibited robust adhesion, with an adhesion force of 120.2 ± 20.3 N/m2 and an adhesion duration of 491 ± 45 min. PTM has been shown to facilitate INS mucosal transfer. Pharmacokinetic studies indicated that the PTM-INS-IPC/EC film significantly improved the absorption of INS, exhibiting a 1.45 and 2.24-fold increase in the area under the concentration-time curve (AUC0-∞) compared to the INS-IPC/EC film and free INS, respectively. Moreover, the PTM-INS-IPC/EC film effectively stabilized the blood glucose levels of type 1 diabetes mellitus (T1DM) rats with post oral glucose administration, maintaining lower glucose levels for approximately 8 h. Hence, the PTM-INS-IPC/EC film provides a promising noninvasive INS delivery system for diabetes treatment.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Lili Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Jinzhuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 561113, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Yi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 561113, China.
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
3
|
Heyns IM, Davis G, Ganugula R, Ravi Kumar MNV, Arora M. Glucose-Responsive Microgel Comprising Conventional Insulin and Curcumin-Laden Nanoparticles: a Potential Combination for Diabetes Management. AAPS J 2023; 25:72. [PMID: 37442863 DOI: 10.1208/s12248-023-00839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Successful management of type 2 diabetes mellitus (T2DM), a complex and chronic disease, requires a combination of anti-hyperglycemic and anti-inflammatory agents. Here, we have conceptualized and tested an integrated "closed-loop mimic" in the form of a glucose-responsive microgel (GRM) based on chitosan, comprising conventional insulin (INS) and curcumin-laden nanoparticles (nCUR) as a potential strategy for effective management of the disease. In addition to mimicking the normal, on-demand INS secretion, such delivery systems display an uninterrupted release of nCUR to combat the inflammation, oxidative stress, lipid metabolic abnormality, and endothelial dysfunction components of T2DM. Additives such as gum arabic (GA) led to a fivefold increased INS loading capacity compared to GRM without GA. The GRMs showed excellent in vitro on-demand INS release, while a constant nCUR release is observed irrespective of glucose concentrations. Thus, this study demonstrates a promising drug delivery technology that can simultaneously, and at physiological/pathophysiological relevance, deliver two drugs of distinct physicochemical attributes in the same formulation.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Garrett Davis
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA.
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA.
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA.
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA.
| |
Collapse
|
4
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
6
|
Karimi M, Kamali H, Mohammadi M, Tafaghodi M. Evaluation of various techniques for production of inhalable dry powders for pulmonary delivery of peptide and protein. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
McKay G, Carty D, Fisher M, Paterson K. A century of insulin: from lifesaving discovery to a journey of scientific evolution! PRACTICAL DIABETES 2021. [DOI: 10.1002/pdi.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gerry McKay
- Department of Diabetes, Endocrinology and Clinical Pharmacology Glasgow Royal Infirmary UK
| | - David Carty
- Department of Diabetes, Endocrinology and Clinical Pharmacology Glasgow Royal Infirmary UK
| | - Miles Fisher
- Department of Diabetes, Endocrinology and Clinical Pharmacology Glasgow Royal Infirmary UK
| | - Ken Paterson
- Department of Diabetes, Endocrinology and Clinical Pharmacology Glasgow Royal Infirmary UK
| |
Collapse
|
8
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
9
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|
10
|
Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 2020; 325:163-175. [PMID: 32629134 DOI: 10.1016/j.jconrel.2020.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Polymeric microneedles (MNs) have been leveraged as a novel transdermal drug delivery platform for effective drug permeation, which were widely used in the treatment of various diseases. However, issues including limited loading capacity of hydrophobic drugs, uncontrollable drug release rates, and monotonic therapeutic strategy hamper the further application of polymeric MNs. As a recent emerging research topic, drawing inspiration from the ways that nanomedicine integrated with MNs have opened new avenues for disease therapy. In this review, we examined the recent studies employing nanoparticles (NPs)-encapsulated polymeric MNs (NPs@MNs) for transdermal delivery of various therapeutic cargos, particularly focused on the application of NPs@MNs for diabetes therapy, infectious disease therapy, cancer therapy, and other dermatological disease therapy. We also provided an overview of the clinical potential and future translation of NPs@MNs.
Collapse
|