1
|
Bellver-Sanchis A, Geng Q, Navarro G, Ávila-López PA, Companys-Alemany J, Marsal-García L, Larramona-Arcas R, Miró L, Perez-Bosque A, Ortuño-Sahagún D, Banerjee DR, Choudhary BS, Soriano FX, Poulard C, Pallàs M, Du HN, Griñán-Ferré C. G9a Inhibition Promotes Neuroprotection through GMFB Regulation in Alzheimer's Disease. Aging Dis 2024; 15:311-337. [PMID: 37307824 PMCID: PMC10796087 DOI: 10.14336/ad.2023.0424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor β (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Qizhi Geng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department Biochemistry and Physiology, Faculty of Pharmacy. Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Laura Marsal-García
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Lluisa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Anna Perez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, México.
| | | | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Francesc X Soriano
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, F-69000 Lyon, France.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Dias A, Silva L, Moura J, Gabriel D, Maia LF. Fluid biomarkers in stroke: From animal models to clinical care. Acta Neurol Scand 2022; 146:332-347. [PMID: 35838031 DOI: 10.1111/ane.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Stroke prevention, early diagnosis, and efficient acute treatment are priorities to successfully impact stroke death and disability. Fluid biomarkers may improve stroke differential diagnostic, patient stratification for acute treatment, and post-stroke individualized rehabilitation. In the present work, we characterized the use of stroke animal models in fluid biomarker research through a systematic review of PubMed and Scopus databases, followed by a literature review on the translation to the human stroke care setting and future perspectives in the field. We found increasing numbers of publications but with limited translation to the clinic. Animal studies are very heterogeneous, do not account for several human features present in stroke, and, importantly, only a minority of such studies used human cohorts to validate biomarker findings. Clinical studies have found appealing candidates, both protein and circulating nucleic acids, to contribute to a more personalized stroke care pathway. Still, brain tissue complexity and the fact that different brain pathologies share lesion biomarkers make this task challenging due to biomarker low specificity. Moreover, the study design and lack of validation cohorts may have precluded a formal integration of biomarkers in different steps of stroke diagnosis and treatment. To overcome such issues, recent pivotal studies on biomarker dynamics in individual patients are providing added value to diagnosis and anticipating patients' early prognosis. Presently, the most consistent protein biomarkers for stroke diagnosis and short- and long-term prognosis are associated with tissue damage at neuronal (TAU), axonal (NFL), or astroglial (GFAP and S100β) levels. Most promising nucleic acids are microRNAs (miR), due to their stability in plasma and ease of access. Still, clinical validation and standardized quantitation place them a step behind compared protein as stroke biomarkers. Ultimately, the definition of clinically relevant biomarker panels and optimization of fast and sensitive biomarker measurements in the blood, together with their combination with clinical and neuroimaging data, will pave the way toward personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lénia Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Moura
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Denis Gabriel
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis F Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Kamyshna I, Kamyshnyi A. Transcriptional Activity of Neurotrophins Genes and Their Receptors in the Peripheral Blood in Patients with Thyroid Diseases in Bukovinian Population of Ukraine. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective. Thyroid hormone has an especially strong impact on central nervous system development, and thyroid hormone deficiency has been shown to result in severe mental retardation. It is crucial to identify compensatory mechanisms that can be involved in improving cognitive function and the quality of life of patients with hypothyroidism.
Methods: We used the pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and validate neurotrophins genes and their receptor expression in patients with thyroid pathology and control group.
Results: The analysis of gene expression of neurotrophins and their receptors showed that CRHBP, FRS2, FRS3, GFRA1, GFRA2, GMFB, NGF, NRG2, NRG4, NTF4, TRO, and VGF significantly decreased their expression in Group 3, which includes the patients with postoperative hypothyroidism. The patients with primary hypothyroidism stemming from AIT had significantly reduced expression of CRHBP, GFRA1, GFRA2, GMFB, NGF, PTGER2, and VGF, while the expression of NRG4 and TRO increased. In Group 3, which includes the patients with AIT and elevated serum anti-Tg and anti-TPO autoantibodies, the mRNA levels of GFRA2, NGF, NRG2, NTF4, NGF, PTGER were reduced, and the expression of CRHBP, FRS2, FRS3 GFRA1, GMFB, NRG4, TRO, and VGF significantly increased.
Conclusion: These results indicate significant variability in the transcriptional activity of the genes of encoding neurotrophins and their receptors in the peripheral blood in people with thyroid diseases.
Collapse
|