1
|
Habib I, Chohan TA, Chohan TA, Batool F, Khurshid U, Khursheed A, Raza A, Ansari M, Hussain A, Anwar S, Awadh Ali NA, Saleem H. Integrated computational approaches for designing potent pyrimidine-based CDK9 inhibitors: 3D-QSAR, docking, and molecular dynamics simulations. Comput Biol Chem 2024; 108:108003. [PMID: 38159453 DOI: 10.1016/j.compbiolchem.2023.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
CDK9 is an emerging target for the development of anticancer drugs. The development of CDK9 inhibitors with significant potency had consistently posed a formidable challenge. In the current research, a number of computational methodologies, such as, 3D-QSAR, molecular docking, fingerprint analysis, molecular dynamic (MD) simulations followed by MMGB/PBSA and ADMET studies were used systemically to uncover the binding mechanism of pyrimidine derivatives against CDK9. The CoMFA and CoMSIA models having high q2 (0.53, 0.54) and r2 values (0.96, 0.93) respectively indicating that model could accurately predict the bioactivities of CDK9 inhibitors. Using the R-group exploration technique implemented by the Spark™ by Cresset group, the structural requirements revealed by the contour maps of model were utilized strategically to create an in-house library of 100 new CDK9 inhibitors. Additionally, the compounds from the in-house library were mapped into 3D-QSAR model which predicted pIC50 values comparable to the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to elucidate the essentials of CDK9 inhibitor design. MD simulations (100 ns) were performed on the selected docked complexes A21, A14 and D98 which contributed in validating the binding interactions. According to the findings of binding free energy analysis (MMGB/PBSA), It was observed that residues CYS106 and GLU107 had a considerable tendency to facilitate ligand-protein interactions via H-bond interactions. The aforementioned findings have the potential to enhance researchers comprehension of the mechanism underlying CDK9 inhibition and may be utilized in the development of innovative and efficacious CDK9 inhibitors.
Collapse
Affiliation(s)
- Iffat Habib
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 5400, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 5400, Pakistan.
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Fakhra Batool
- Department of Pharmacy, The Women university Multan, Multan, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100 , Pakistan
| | - Anjum Khursheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100 , Pakistan
| | - Ali Raza
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 5400, Pakistan
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia.
| | - Nasser A Awadh Ali
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 5400, Pakistan.
| |
Collapse
|
2
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
3
|
Fratianni F, Amato G, De Feo V, d'Acierno A, Coppola R, Nazzaro F. Potential therapeutic benefits of unconventional oils: assessment of the potential in vitro biological properties of some Rubiaceae, Cucurbitaceae, and Brassicaceae seed oils. Front Nutr 2023; 10:1171766. [PMID: 37153908 PMCID: PMC10160382 DOI: 10.3389/fnut.2023.1171766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction Seed oils are versatile in the food sector and for pharmaceutical purposes. In recent years, their biological properties aroused the interest of the scientific world. Materials and methods We studied the composition of fatty acids (FAs) and some in vitro potential therapeutic benefits of five cold-pressed commercial oils obtained from broccoli, coffee, green coffee, pumpkin, and watermelon seeds. In particular, we assayed the antioxidant activity (using diphenyl-1-picrylhydrazyl (DPPH) and azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays). In addition, through the fatty acid composition, we calculated the atherogenicity index (AI) and thrombogenicity index (TI) to evaluate the potential impact of such oils on cardiovascular diseases. Furthermore, we assessed the in vitro anti-inflammatory capacity of the oils (evaluated through their effectiveness in preventing protein degradation, using bovine serum albumin as protein standard) and the ability of the oils to inhibit in vitro activity of three among the essential enzymes, cholinesterases and tyrosinase, involved in the Alzheimer's and Parkinson's neurodegenerative diseases. Finally, we evaluated the capacity of the oils to inhibit the biofilm of some pathogenic bacteria. Results The unsaturated fatty acids greatly predominated in broccoli seed oil (84.3%), with erucic acid as the main constituent (33.1%). Other unsaturated fatty acids were linolenic (20.6%) and linoleic (16.1%) acids. The saturated fatty acids fraction comprised the palmitic (6.8%) and stearic acids (0.2%). Broccoli seed oil showed the best AI (0.080) and TI (0.16) indexes. The oils expressed a good antioxidant ability. Except for the watermelon seed oil, the oils exhibited a generally good in vitro anti-inflammatory activity, with IC50 values not exceeding 8.73 micrograms. Broccoli seed oil and green coffee seed oil showed the best acetylcholinesterase inhibitory activity; coffee seed oil and broccoli seed oil were the most effective in inhibiting butyrylcholinesterase (IC50 = 15.7 μg and 20.7 μg, respectively). Pumpkin and green coffee seed oil showed the best inhibitory activity against tyrosinase (IC50 = 2 μg and 2.77 μg, respectively). In several cases, the seed oils inhibited the biofilm formation and the mature biofilm of some gram-positive and gram-negative bacteria, with Staphylococcus aureus resulting in the most sensitive strain. Such activity seemed related only in some cases to the capacity of the oils to act on the sessile bacterial cells' metabolism, as indicated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric method.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonio d'Acierno
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Raffaele Coppola
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- *Correspondence: Filomena Nazzaro
| |
Collapse
|
4
|
Zia S, Saleem M, Asif M, Hussain K, Butt BZ. Diospyros malabarica (Desr.) Kostel fruits extract attenuated acute and chronic inflammation through modulation of the expression of pro- and anti-inflammatory biomarkers in rat models. Inflammopharmacology 2022; 30:2211-2227. [PMID: 36223063 DOI: 10.1007/s10787-022-01048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p < 0.05) reduction in the serum levels of C-reactive protein and rheumatoid factor in the mDMF treatment groups. RT-PCR data showed significant (p < 0.05) down-regulation of various pro-inflammatory markers (TNF-α, NF-κB, COX-2, IL-1β and IL-6) and up-regulation of anti-inflammatory markers (IκB, IL-4 and IL-10) in serum samples of rats treated with mDMF. The histopathology of the ankle joints showed reduced pannus formation, joint swelling and synovial hyperplasia in mDMF-treated animals when compared with the untreated disease control group. Overall, it may be concluded that the antioxidant, anti-inflammatory and anti-arthritis properties of mDMF are due to its flavonoid and phenolic constituents. Further studies using a stable oral dosage form of D. malabarica (Desr.) Kostel fruits extract are warranted to explore its effects in other inflammatory disorders, including irritable bowel syndrome, appendicitis and hepatitis.
Collapse
Affiliation(s)
- Saba Zia
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Khalid Hussain
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Beenish Zia Butt
- School of Science, Monash University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Bashir A, Asif M, Saadullah M, Saleem M, Khalid SH, Hussain L, Ullah Khan I, Sidra Yaseen H, Zubair HM, Shamas MU, Al Zarzour R, Chohan TA. Therapeutic Potential of Standardized Extract of Melilotus indicus (L.) All. and Its Phytochemicals against Skin Cancer in Animal Model: In Vitro, In Vivo, and In Silico Studies. ACS OMEGA 2022; 7:25772-25782. [PMID: 35910099 PMCID: PMC9330279 DOI: 10.1021/acsomega.2c03053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
Melilotus indicus (L.) All. is known to have anti-inflammatory and anticancer properties. The present study explored the in vivo skin carcinogenesis attenuating potential of ethanolic extract of M. indicus (L.) All. (Miet) in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer model. The ethanolic extract of the plant was prepared by a maceration method. HPLC analysis indicated the presence of quercetin in abundance and also various other phytoconstituents. DPPH radical scavenging assay results showed moderate antioxidant potential (IC50 = 93.55 ± 5.59 μg/mL). A topical acute skin irritation study showed the nonirritant nature of Miet. Data for the skin carcinogenic model showed marked improvement in skin architecture in Miet and its primary phytochemicals (quercetin and coumarin) treated groups. Miet 50% showed comparable effects with 5-fluorouracil. Significant (p < 0.05) anticancerous effects were seen in coumarin-quercetin combination-treated animals than in single agent (coumarin and quercetin alone)-treated animals. Chorioallantoic membrane (CAM) assay results showed the antiangiogenic potential of Miet. Treatment with Miet significantly down-regulated the serum levels of CEA (carcinoembryonic antigen) and TNF-α (Tumor necrosis factor-α). Data for the docking study indicated the binding potential of quercetin and coumarin with TNF-α, EGFR, VEGF, and BCL2 proteins. Thus, it is concluded that Miet has skin cancer attenuating potential that is proposed to be due to the synergistic actions of its bioactive molecules. Further studies to explore the effects of Miet and its bioactive molecules as an adjuvant therapy with low dose anticancer drugs are warranted, which may lead to a new area of research.
Collapse
Affiliation(s)
- Asiya Bashir
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Department
of Pharmacology, Faculty of Pharmacy, The
Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Malik Saadullah
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohammad Saleem
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Liaqat Hussain
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiza Sidra Yaseen
- Department
of Pharmacy, Faculty of Pharmacy, the University
of Lahore, Lahore 54000, Pakistan
| | - Hafiz Muhammad Zubair
- Department
of Pharmacology, Faculty of Pharmacy, The
Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | | | - Raghdaa Al Zarzour
- Discipline
of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Tahir Ali Chohan
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Zeng LH, Rana S, Hussain L, Asif M, Mehmood MH, Imran I, Younas A, Mahdy A, Al-Joufi FA, Abed SN. Polycystic Ovary Syndrome: A Disorder of Reproductive Age, Its Pathogenesis, and a Discussion on the Emerging Role of Herbal Remedies. Front Pharmacol 2022; 13:874914. [PMID: 35924049 PMCID: PMC9340349 DOI: 10.3389/fphar.2022.874914] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a very common, complex, and heterogeneous endocrine disorder of women that involves a combination of environmental and genetic factors. PCOS affects women of growing age particularly at the early to late reproductive stage (15-35 years). Currently, PCOS affects 1 in every 10 women worldwide. It is characterized majorly by a raised level of androgens such as testosterone and a large number of ovarian cysts (more than 10) that cause anovulation, infertility, and irregular menstrual cycle. PCOS is also related to other endocrine and metabolic abnormalities, such as obesity, hirsutism, acne, diabetes, insulin resistance, and glucose impairment. PCOS can be treated with allopathic, ayurvedic, and natural or herbal medications along with lifestyle modifications. Herbal medicines remained in demand for numerous reasons such as high cost and side effects associated with the use of allopathic medicine and our traditional norms, which have helped humans to use more herbal products for their health benefits. Estrogenic and nonestrogenic phytochemicals present in various plant species such as Glycyrrhiza glabra L. [Fabaceae], Aloe vera (L.) Burm. f. [Asphodelaceae], Silybum marianum (L.). Gaertn. [Asteraceae], Serenoa repens (W.Bartram) Small [Arecaceae], Actaea racemosa L. [Ranunculaceae], and Angelica sinensis (Oliv.) Diels [Apiaceae] are effective and harmless. Herbal medicines are found to be cost-effective, efficacious, and a highly esteemed source of management/treatment for PCOS than allopathic medicines. In this literature review, diagnosis, signs, and symptoms of PCOS; causes of hormonal imbalance; and risk factors associated with PCOS and their management are discussed briefly, and the focus was to find out the role of herbal remedies in PCOS management.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | - Saba Rana
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Anam Younas
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Shaymaa Najm Abed
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|