1
|
Chang CCJ, Liu B, Liebmann JM, Cioffi GA, Winn BJ. Glaucoma and the Human Microbiome. J Glaucoma 2024; 33:529-538. [PMID: 38809163 DOI: 10.1097/ijg.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW To explore a view of the human microbiome as an interconnected, functional, dynamic system that may be linked to the pathogenesis and progression of glaucoma. METHODS A literature review was undertaken that included publications from 1966 to 2023. RESULTS Bacterial lipopolysaccharides (LPS) activate toll-like receptors (TLR) and mediate the human immune response. The LPS-TLR4 pathway is a potential avenue for the ocular, gut, and oral microbiomes to interface and/or influence ocular disease. Studies of gut dysbiosis have shown that alterations in the healthy microbiota can predispose the host to immune-mediated inflammatory and neurodegenerative conditions, while oral and ocular surface dysbiosis has been correlated with glaucoma. While developmental exposure to commensal microflora has shown to be necessary for the autoimmune and neurodegenerative responses to elevated intraocular pressure to take place, commensal bacterial products like short-chain fatty acids have regulatory effects protective against glaucoma. SUMMARY Alterations to human microbiotas have been associated with changes in intestinal permeability, gene regulation, immune cell differentiation, and neural functioning, which may predispose the host to glaucoma. Select microbes have been highlighted for their potential contributions to glaucoma disease progression or protection, raising the potential for microbiota-based treatment modalities. Current topical glaucoma treatments may disrupt the ocular surface microbiota, potentially having ramifications on host health. Further study of the relationships between human microbiome and glaucoma is needed.
Collapse
Affiliation(s)
| | - Benjamin Liu
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | | | | | - Bryan J Winn
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
2
|
Chen X, Su D, Sun Z, Fu Y, Hu Y, Zhang Y, Zhang X, Wei Q, Zhu W, Ma X, Hu S. Preliminary study on whole genome methylation and transcriptomics in age-related cataracts. Gene 2024; 898:148096. [PMID: 38128790 DOI: 10.1016/j.gene.2023.148096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
DNA methylation plays an important role in the occurrence and development of age-related cataracts (ARC). This study aims to reveal potential epigenetic biomarkers of ARC by detecting modifications to the DNA methylation patterns of genes shown to be related to ARC by transcriptomics. The MethylationEPIC BeadChip (850 K) was used to analyze the DNA methylation levels in ARC patients and unaffected controls, and the Pearson correlation test was used to perform genome-wide integration analysis of DNA methylation and transcriptome data. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to perform functional analysis of the whole genome, promoter regions (TSS1500/TSS200), and the associated differentially methylated genes (DMG). Pyrosequencing was used to verify the methylation levels of the selected genes. The results showed that, compared with the control group, a total of 52,705 differentially methylated sites were detected in the ARC group, of which 13,858 were hypermethylated and 38,847 were hypomethylated. GO and KEGG analyses identified functions related to the cell membrane, the calcium signaling pathway, and their possible molecular mechanisms. Then, 57 DMGs with negative promoter methylation correlations were screened by association analysis. Pyrosequencing verified that the ARC group had higher methylation levels of C3 and CCKAR and lower methylation levels of NLRP3, LEFTY1, and GPR35 compared with the control group. In summary, our study reveals the whole-genome DNA methylation patterns and gene expression profiles in ARC, and the molecular markers of methylation identified herein may aid in the prevention, diagnosis, treatment, and prognosis of ARC.
Collapse
Affiliation(s)
- Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yanjiang Fu
- Daqing Eye Hospital, Daqing 163000, Heilongjiang, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yue Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Qianqiu Wei
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Wenna Zhu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China.
| |
Collapse
|
3
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
4
|
Yee T, Wert KJ. Base and Prime Editing in the Retina-From Preclinical Research toward Human Clinical Trials. Int J Mol Sci 2022; 23:12375. [PMID: 36293232 PMCID: PMC9604474 DOI: 10.3390/ijms232012375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of diseases that are one of the leading causes of vision loss in young and aged individuals. IRDs are mainly caused by a loss of the post-mitotic photoreceptor neurons of the retina, or by the degeneration of the retinal pigment epithelium. Unfortunately, once these cells are damaged, it is irreversible and leads to permanent vision impairment. Thought to be previously incurable, gene therapy has been rapidly evolving to be a potential treatment to prevent further degeneration of the retina and preserve visual function. The development of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) base and prime editors have increased the capabilities of the genome editing toolbox in recent years. Both base and prime editors evade the creation of double-stranded breaks in deoxyribonucleic acid (DNA) and the requirement of donor template of DNA for repair, which make them advantageous methods in developing clinical therapies. In addition, establishing a permanent edit within the genome could be better suited for patients with progressive degeneration. In this review, we will summarize published uses of successful base and prime editing in treating IRDs.
Collapse
Affiliation(s)
- Tiffany Yee
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine J. Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Swierkowska J, Karolak JA, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Decreased Levels of DNA Methylation in the PCDHA Gene Cluster as a Risk Factor for Early-Onset High Myopia in Young Children. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 36036911 PMCID: PMC9434983 DOI: 10.1167/iovs.63.9.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose High myopia (HM), an eye disorder with at least –6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels. Methods The DNA methylation pattern was studied based on the genome-wide methylation data of 18 Polish children with HM paired with 18 controls. Genes overlapping CG dinucleotides with decreased methylation level in HM cases were assessed by enrichment analyses. From those, genes with CG dinucleotides in promoter regions were further evaluated based on exome sequencing (ES) data of 16 patients with HM from unrelated Polish families, Sanger sequencing data of the studied children, and the RNA sequencing data of human retinal ARPE-19 cells. Results The CG dinucleotide with the most decreased methylation level in cases was identified in a promoter region of PCDHA10 that overlaps intronic regions of PCDHA1–9 of the PCDHA gene cluster in myopia 5q31 locus. Also, two single nucleotide variants, rs200661444, detected in our ES, and rs246073, previously found as associated with a refractive error in a genome-wide association study, were revealed within this gene cluster. Additionally, genes previously linked to ocular phenotypes, myopia-related traits, or loci, including ADAM20, ZFAND6, ETS1, ABHD13, SBSPON, SORBS2, LMOD3, ATXN1, and FARP2, were found to have decreased methylation. Conclusions Alterations in the methylation pattern of specific CG dinucleotides may be associated with early-onset HM, so this could be used to develop noninvasive biomarkers of HM in children and adolescents.
Collapse
Affiliation(s)
| | - Justyna A Karolak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Zhong Z, Wang J, Tian J, Deng X, Balayan A, Sun Y, Xiang Y, Guan J, Schimelman J, Hwang H, You S, Wu X, Ma C, Shi X, Yao E, Deng SX, Chen S. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment. Biomaterials 2022; 282:121391. [PMID: 35101743 PMCID: PMC10162446 DOI: 10.1016/j.biomaterials.2022.121391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022]
Abstract
Pterygium is an ocular surface disorder with high prevalence that can lead to vision impairment. As a pathological outgrowth of conjunctiva, pterygium involves neovascularization and chronic inflammation. Here, we developed a 3D multicellular in vitro pterygium model using a digital light processing (DLP)-based 3D bioprinting platform with human conjunctival stem cells (hCjSCs). A novel feeder-free culture system was adopted and efficiently expanded the primary hCjSCs with homogeneity, stemness and differentiation potency. The DLP-based 3D bioprinting method was able to fabricate hydrogel scaffolds that support the viability and biological integrity of the encapsulated hCjSCs. The bioprinted 3D pterygium model consisted of hCjSCs, immune cells, and vascular cells to recapitulate the disease microenvironment. Transcriptomic analysis using RNA sequencing (RNA-seq) identified a distinct profile correlated to inflammation response, angiogenesis, and epithelial mesenchymal transition in the bioprinted 3D pterygium model. In addition, the pterygium signatures and disease relevance of the bioprinted model were validated with the public RNA-seq data from patient-derived pterygium tissues. By integrating the stem cell technology with 3D bioprinting, this is the first reported 3D in vitro disease model for pterygium that can be utilized for future studies towards personalized medicine and drug screening.
Collapse
Affiliation(s)
- Zheng Zhong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Tian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alis Balayan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA; School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiaao Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Henry Hwang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaokang Wu
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chao Ma
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaoao Shi
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Verma S, Singh A, Varshney A, Chandru RA, Acharya M, Rajput J, Sangwan VS, Tiwari AK, Bhowmick T, Tiwari A. Infectious Keratitis: An Update on Role of Epigenetics. Front Immunol 2021; 12:765890. [PMID: 34917084 PMCID: PMC8669721 DOI: 10.3389/fimmu.2021.765890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms modulate gene expression and function without altering the base sequence of DNA. These reversible, heritable, and environment-influenced mechanisms generate various cell types during development and orchestrate the cellular responses to external stimuli by regulating the expression of genome. Also, the epigenetic modifications influence common pathological and physiological responses including inflammation, ischemia, neoplasia, aging and neurodegeneration etc. In recent past, the field of epigenetics has gained momentum and become an increasingly important area of biomedical research As far as eye is concerned, epigenetic mechanisms may play an important role in many complex diseases such as corneal dystrophy, cataract, glaucoma, diabetic retinopathy, ocular neoplasia, uveitis, and age-related macular degeneration. Focusing on the epigenetic mechanisms in ocular diseases may provide new understanding and insights into the pathogenesis of complex eye diseases and thus can aid in the development of novel treatments for these diseases. In the present review, we summarize the clinical perspective of infectious keratitis, role of epigenetics in infectious keratitis, therapeutic potential of epigenetic modifiers and the future perspective.
Collapse
Affiliation(s)
- Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), New Delhi, India
| | - Aastha Singh
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - R Arun Chandru
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | - Manisha Acharya
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Jyoti Rajput
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, United States
| | - Tuhin Bhowmick
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | - Anil Tiwari
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| |
Collapse
|
8
|
Identification of the aberrantly methylated differentially expressed genes in proliferative diabetic retinopathy. Exp Eye Res 2020; 199:108141. [PMID: 32721427 DOI: 10.1016/j.exer.2020.108141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022]
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. Proliferative DR (PDR) is a more advanced stage of DR, which can cause severe impaired vision and even blindness. However, the precise pathological mechanisms of PDR remain unknown. DNA methylation serves an important role in the initiation and progression of numerous types of disease including PDR. The purpose of this study was to identify the aberrantly methylated differentially expressed genes (DEGs) as potential therapeutic targets of PDR. The gene expression microarray dataset GSE60436 and the methylation profiling microarray dataset GSE57362 were used to determine the aberrantly methylated DEGs in PDR, utilizing normal retinas as controls and fibrovascular membranes (FVMs) in patients with PDR as PDR samples. The functional term and signaling pathway enrichment analysis of the selected genes were subsequently performed. In addition, protein-protein interaction (PPI) networks were constructed to determine the hub genes, and the network of transcriptional factor (TF) and target hub genes was also analyzed. In total, 132 hypomethylated genes were found to be upregulated, whereas 172 hypermethylated genes were discovered to be downregulated in PDR. The hypomethylated upregulated genes were found to be enriched in the pathways, such as "cell-substrate adhesion", "adherens junction", "cell adhesion molecule binding" and "extracellular matrix receptor interactions". Meanwhile, the hypermethylated downregulated genes were enriched in the pathways, such as "visual perception", "presynapse" and the "synaptic vesicle cycle". Based on the PPI analysis, a total of eight hub genes were identified: CTGF, SERPINH1, LOX, RBP3, OTX2, RPE65, OPN1SW and NRL. It was hypothesized that the aberrant methylation of these genes might be related to the possible pathophysiology of PDR. An important transcriptional factor, TFDP1, was discovered to share the closest interactions with the hub genes from the gene-TF network. In conclusion, the present study identified an association among DNA methylation and gene expression in PDR using bioinformatics analysis, and identified the hub genes which might be potential methylation-based diagnosis and treatment targets for PDR in the near future.
Collapse
|
9
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
10
|
Kowluru RA, Mohammad G. Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Sci Rep 2020; 10:6655. [PMID: 32313015 PMCID: PMC7171070 DOI: 10.1038/s41598-020-63527-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Retinopathy continues to progress even when diabetic patients try to control their blood sugar, but the molecular mechanism of this 'metabolic memory' phenomenon remains elusive. Retinal mitochondria remain damaged and vicious cycle of free radicals continues to self-propagate. DNA methylation suppresses gene expression, and diabetes activates DNA methylation machinery. Our aim was to investigate the role of DNA methylation in continued compromised mitochondrial dynamics and genomic stability in diabetic retinopathy. Using retinal endothelial cells, incubated in 20 mM glucose for four days, followed by 5 mM glucose for four days, and retinal microvessels from streptozotocin-induced diabetic rats in poor glycemia for four months, followed by normal glycemia for four additional months, DNA methylation of mitochondrial fusion and mismatch repair proteins, Mfn2 and Mlh1 respectively, was determined. Retinopathy was detected in trypsin-digested microvasculature. Re-institution of good glycemia had no beneficial effect on hypermethylation of Mfn2 and Mlh1 and retinal function (electroretinogram), and the retinopathy continued to progress. However, intervention of good glycemia directly with DNA methylation inhibitors (Azacytidine or Dnmt1-siRNA), prevented Mfn2 and Mlh1 hypermethylation, and ameliorated retinal dysfunction and diabetic retinopathy. Thus, direct regulation of DNA methylation can prevent/reverse diabetic retinopathy by maintaining mitochondrial dynamics and DNA stability, and prevent retinal functional damage.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetic Retinopathy/chemically induced
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/pathology
- Diabetic Retinopathy/therapy
- Disease Progression
- Electroretinography
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Glucose/adverse effects
- Humans
- Hyperglycemia/chemically induced
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Hyperglycemia/therapy
- Male
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
| | - Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Nayyar A, Gindina S, Barron A, Hu Y, Danias J. Do epigenetic changes caused by commensal microbiota contribute to development of ocular disease? A review of evidence. Hum Genomics 2020; 14:11. [PMID: 32169120 PMCID: PMC7071564 DOI: 10.1186/s40246-020-00257-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
There is evidence that genetic polymorphisms and environmentally induced epigenetic changes play an important role in modifying disease risk. The commensal microbiota has the ability to affect the cellular environment throughout the body without requiring direct contact; for example, through the generation of a pro-inflammatory state. In this review, we discuss evidence that dysbiosis in intestinal, pharyngeal, oral, and ocular microbiome can lead to epigenetic reprogramming and inflammation making the host more susceptible to ocular disease such as autoimmune uveitis, age-related macular degeneration, and open angle glaucoma. Several mechanisms of action have been proposed to explain how changes to commensal microbiota contribute to these diseases. This is an evolving field that has potentially significant implications in the management of these conditions especially from a public health perspective.
Collapse
Affiliation(s)
- Ashima Nayyar
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Sofya Gindina
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Arturo Barron
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Yan Hu
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
12
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
13
|
Liu J, Yin Y. Inhibition of histone deacetylase protects the damaged cataract via regulating the NF-κB pathway in cultured lens epithelial cells. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219870093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Induction of oxidative damage by the activation of histone deacetylase (HDAC) is an integral event that causes major membrane damage of ocular tissues and leads to the pathogenesis of cataract. It is elucidated that nuclear factor-κB is a mediator in the process of cataract development. However, studies on the role played by epigenetic proteins in regulating cataract pathogenesis are limited. Hence, in the current investigation, ARPE-19 human retinal epithelial cells were used as an experimental model to elucidate the role of HDAC inhibition and its mechanism behind the cataract pathogenesis. ARPE-19 cells were exposed to H2O2, with and without Trichostatin A (TSA), a pan-HDAC inhibitor, and maintained along with control cells without any treatment. On exposure to H2O2, cells were susceptible to oxidative stress as it is evident from the reduced expression levels of superoxide dismutase (SOD), catalase, and GSH levels. Simultaneously, H2O2-exposed cells showed the nuclear translocation of NF-κB with the activation of inflammatory cytokines such as CXCL1 and IL-6. In addition, the mRNA expression analysis revealed that the GADD45α, COX-2, MCP-1, and ICAM-1 expressions were increased in H2O2 group. Moreover, the activity of HDAC was increased to 2-fold with a significant reduction in the histone acetyltransferase (HAT) activity in cells that were maintained under oxidative conditions. However, TSA was able to inhibit the critical cytokines’ expression with attenuated HDAC activity and limited NF-κB translocation. Furthermore, pre-treatment of TSA significantly suppressed the transcript levels of up-regulated inflammatory markers in cells. Together, these findings offer new insight into the role of HDACs in regulating cellular processes involved in the pathogenesis of cataract as well as the potential use of HDAC inhibitors as therapeutics for controlling the disease progression.
Collapse
Affiliation(s)
- Jun Liu
- Department of Ophthalmology, Jining No. 1 People’s Hospital, Jining, China
| | - Yan Yin
- Department of Ophthalmology, Jining No. 1 People’s Hospital, Jining, China
| |
Collapse
|
14
|
Shafabakhsh R, Aghadavod E, Ghayour‐Mobarhan M, Ferns G, Asemi Z. Role of histone modification and DNA methylation in signaling pathways involved in diabetic retinopathy. J Cell Physiol 2018; 234:7839-7846. [DOI: 10.1002/jcp.27844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Majid Ghayour‐Mobarhan
- Metabolic Syndrome Research Center School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon Ferns
- Division of Medical Education Brighton & Sussex Medical School Brighton UK
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
15
|
Dos Santos Nunes MK, Silva AS, Wanderley de Queiroga Evangelista I, Modesto Filho J, Alves Pegado Gomes CN, Ferreira do Nascimento RA, Pordeus Luna RC, de Carvalho Costa MJ, Paulo de Oliveira NF, Camati Persuhn D. Analysis of the DNA methylation profiles of miR-9-3, miR-34a, and miR-137 promoters in patients with diabetic retinopathy and nephropathy. J Diabetes Complications 2018; 32:593-601. [PMID: 29674133 DOI: 10.1016/j.jdiacomp.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - João Modesto Filho
- Department of Internal Medicine, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | | | - Maria José de Carvalho Costa
- Nutrition Science Department and Post-graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Darlene Camati Persuhn
- Department of Molecular Biology and Post-Graduation Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil.
| |
Collapse
|
16
|
Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye. Prog Retin Eye Res 2018; 64:84-95. [DOI: 10.1016/j.preteyeres.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 01/15/2023]
|
17
|
DNA Methylation Status of the Interspersed Repetitive Sequences for LINE-1, Alu, HERV-E, and HERV-K in Trabeculectomy Specimens from Glaucoma Eyes. J Ophthalmol 2018; 2018:9171536. [PMID: 29651348 PMCID: PMC5831604 DOI: 10.1155/2018/9171536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Background/Aims Epigenetic mechanisms via DNA methylation may be related to glaucoma pathogenesis. This study aimed to determine the global DNA methylation level of the trabeculectomy specimens among patients with different types of glaucoma and normal subjects. Methods Trabeculectomy sections from 16 primary open-angle glaucoma (POAG), 12 primary angle-closure glaucoma (PACG), 16 secondary glaucoma patients, and 10 normal controls were assessed for DNA methylation using combined-bisulfite restriction analysis. The percentage of global methylation level of the interspersed repetitive sequences for LINE-1, Alu, HERV-E, and HERV-K were compared between the 4 groups. Results There were no significant differences in the methylation for LINE-1 and HERV-E between patients and normal controls. For the Alu marker, the methylation was significantly lower in all types of glaucoma patients compared to controls (POAG 52.19% versus control 52.83%, p = 0.021; PACG 51.50% versus control, p = 0.005; secondary glaucoma 51.95% versus control, p = 0.014), whereas the methylation level of HERV-K was statistically higher in POAG patients compared to controls (POAG 49.22% versus control 48.09%, p = 0.017). Conclusions The trabeculectomy sections had relative DNA hypomethylation of Alu in all glaucoma subtypes and relative DNA hypermethylation of HERV-K in POAG patients. These methylation changes may lead to the fibrotic phenotype in the trabecular meshwork.
Collapse
|
18
|
Burdon KP, Awadalla MS, Mitchell P, Wang JJ, White A, Keane MC, Souzeau E, Graham SL, Goldberg I, Healey PR, Landers J, Mills RAD, Best S, Hewitt AW, Sharma S, Craig JE. DNA methylation at the 9p21 glaucoma susceptibility locus is associated with normal-tension glaucoma. Ophthalmic Genet 2017; 39:221-227. [PMID: 29265947 DOI: 10.1080/13816810.2017.1413659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Recent genome-wide association studies reported strong association of genetic variation at the CDKN2B/CDKN2B-AS1 locus on 9p21 with normal-tension glaucoma (NTG) in multiple populations. The mechanism by which this locus causes disease remains to be elucidated. We investigated the association of DNA methylation of CpG islands at this locus with NTG. METHODS We conducted a retrospective case-control study of 178 NTG cases and 202 unaffected controls from Australia. CDKN2B and CDKN2B-AS1 promoter methylation was measured quantitatively using the MassCleave assay, and assessed for association with the disease, and the genotype of the associated risk variants using IBM SPSS statistics 22.0 CpG sites at which methylation status was associated with NTG were validated using pyrosequencing. RESULTS We identified one CpG site (F1:13-14) in the CDKN2B promoter which showed significant association with NTG (p = 0.001). The association was highly significant in female cases (p = 0.006) but not in male cases (p = 0.054). The association was validated using an independent method confirming the likely association of DNA methylation with NTG in females (p = 0.015), but not in males (p = 0.497). In addition, methylation at CpG sites in CDKN2B was also associated with genotype at rs1063192, which is known to confer risk for NTG. CONCLUSION This study reveals an association of methylation status in the CDKN2B promoter with NTG, particularly in females. This suggests that the observed genetic association with the disease at this locus could be in part due to epigenetic mechanisms, and is likely to be independent of the association of nonsynonymous coding variation within the gene.
Collapse
Affiliation(s)
- Kathryn P Burdon
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia.,b Menzies Institute for Medical Research , University of Tasmania , Sydney , Australia
| | - Mona S Awadalla
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Paul Mitchell
- c Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research , University of Sydney , Westmead , Australia
| | - Jie Jin Wang
- c Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research , University of Sydney , Westmead , Australia
| | - Andrew White
- c Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research , University of Sydney , Westmead , Australia
| | - Miriam C Keane
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Emmanuelle Souzeau
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Stuart L Graham
- d Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia
| | - Ivan Goldberg
- e Eye Associates, Glaucoma Unit , Sydney Eye Hospital , Australia
| | - Paul R Healey
- c Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research , University of Sydney , Westmead , Australia.,e Eye Associates, Glaucoma Unit , Sydney Eye Hospital , Australia.,f Discipline of Ophthalmology , The University of Sydney , Australia
| | - John Landers
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Richard A D Mills
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Stephen Best
- g Auckland Eye , Auckland , New Zealand.,h Auckland District Health Board , Greenlane Clinical Centre , Auckland , New Zealand.,i Discipline of Ophthalmology , University of Auckland , Auckland , New Zealand
| | - Alex W Hewitt
- b Menzies Institute for Medical Research , University of Tasmania , Sydney , Australia.,j Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital & Ophthalmology, Department of Surgery , The University of Melbourne , Melbourne, Australia
| | - Shiwani Sharma
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| | - Jamie E Craig
- a Department of Ophthalmology , Flinders University , Adelaide, South Australia , Australia
| |
Collapse
|
19
|
Review: Environmental impact on ocular surface disorders: Possible epigenetic mechanism modulation and potential biomarkers. Ocul Surf 2017; 15:680-687. [DOI: 10.1016/j.jtos.2017.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/02/2017] [Accepted: 05/28/2017] [Indexed: 12/27/2022]
|
20
|
Khuc E, Bainer R, Wolf M, Clay SM, Weisenberger DJ, Kemmer J, Weaver VM, Hwang DG, Chan MF. Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS One 2017; 12:e0175112. [PMID: 28384203 PMCID: PMC5383226 DOI: 10.1371/journal.pone.0175112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
Transparency of the human cornea is necessary for vision. Fuchs Endothelial Corneal Dystrophy (FECD) is a bilateral, heritable degeneration of the corneal endothelium, and a leading indication for corneal transplantation in developed countries. While the early onset, and rarer, form of FECD has been linked to COL8A2 mutations, the more common, late onset form of FECD has genetic mutations linked to only a minority of cases. Epigenetic modifications that occur in FECD are unknown. Here, we report on and compare the DNA methylation landscape of normal human corneal endothelial (CE) tissue and CE from FECD patients using the Illumina Infinium HumanMethylation450 (HM450) DNA methylation array. We show that DNA methylation profiles are distinct between control and FECD samples. Differentially methylated probes (10,961) were identified in the FECD samples compared with the control samples, with the majority of probes being hypermethylated in the FECD samples. Genes containing differentially methylated sites were disproportionately annotated to ontological categories involving cytoskeletal organization, ion transport, hematopoetic cell differentiation, and cellular metabolism. Our results suggest that altered DNA methylation patterns may contribute to loss of corneal transparency in FECD through a global accumulation of sporadic DNA methylation changes in genes critical to basic CE biological processes.
Collapse
Affiliation(s)
- Emily Khuc
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Russell Bainer
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, California, United States of America
- Bay Area Physical Sciences-Oncology Program, University of California, Berkeley, California, United States of America
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Selene M. Clay
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jacquelyn Kemmer
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Valerie M. Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, California, United States of America
- Bay Area Physical Sciences-Oncology Program, University of California, Berkeley, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
- Departments of Anatomy and Bioengineering and Therapeutic Sciences and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - David G. Hwang
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Matilda F. Chan
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Li W, Liu J, Galvin JA. Epigenetics and Common Ophthalmic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:597-600. [PMID: 28018148 PMCID: PMC5168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study of ocular diseases and epigenetic dysregulation is an emerging area of research. The knowledge from the epigenetic mechanisms of DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs regarding the pathogenesis of ocular diseases will be helpful for improved treatment modalities for our patients. In particular, we focus upon the how epigenetic regulatory mechanisms impact five common ocular diseases: age related macular degeneration, age-related cataract, pterygium, retinoblastoma, and uveal melanoma. Hence, the foundation of this research paves the way for future specific therapeutic targets to treat and prevent vision loss.
Collapse
Affiliation(s)
| | | | - Jennifer A. Galvin
- To whom all correspondence should be addressed: Jennifer A. Galvin, MD, Assistant Professor, Department of Ophthalmology and Visual Science, Yale School of Medicine, 40 Temple Street, Suite 3B, New Haven, CT 06510, Tel: 203-785-2020, Fax: 203-785-5909,
| |
Collapse
|
22
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
24
|
Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci 2016; 17:ijms17060895. [PMID: 27338342 PMCID: PMC4926429 DOI: 10.3390/ijms17060895] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
miR-126 has recently been implicated in modulating angiogenic factors in vascular development. Understandings its biological significance might enable development of therapeutic interventions for diseases like age-related macular degeneration (AMD). We aimed to determine the role of miR-126 in AMD using a laser-induced choroidal neovascularization (CNV) mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-126 mimic. The expression of miR-126, vascular endothelial growth factor-A (VEGF-A), Kinase insert domain receptor (KDR) and Sprouty-related EVH1 domain-containing protein 1 (SPRED-1) in ocular tissues were analyzed by qPCR and Western blot. The overexpression effects of miR-126 were also proven on human microvascular endothelial cells (HMECs). miR-126 showed a significant decrease in CNV mice (p < 0.05). Both mRNA and protein levels of VEGF-A, KDR and SPRED-1 were upregulated with CNV; these changes were ameliorated by restoration of miR-126 (p < 0.05). CNV was reduced after miR-126 transfection. Transfection of miR-126 reduced the HMECs 2D-capillary-like tube formation (p < 0.01) and migration (p < 0.01). miR-126 has been shown to be a negative modulator of angiogenesis in the eye. All together these results high lights the therapeutic potential of miR-126 suggests that it may contribute as a putative therapeutic target for AMD in humans.
Collapse
Affiliation(s)
- Lei Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Amy Yi Wei Lee
- Department of Pharmacology and Therapeutics, Drug Delivery Unit, Centre for Eye Research Australia, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Jonathan P Wigg
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Hitesh Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Hong Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| |
Collapse
|
25
|
Epigenetic Regulation of Werner Syndrome Gene in Age-Related Cataract. J Ophthalmol 2015; 2015:579695. [PMID: 26509079 PMCID: PMC4609838 DOI: 10.1155/2015/579695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose. To examine the promoter methylation and histone modification of WRN (Werner syndrome gene), a DNA repair gene, and their relationship with the gene expression in age-related cataract (ARC) lens. Methods. We collected the lenses after cataract surgery from 117ARC patients and 39 age-matched non-ARC. WRN expression, DNA methylation and histone modification around the CpG island were assessed. The methylation status of Human-lens-epithelium cell (HLEB-3) was chemically altered to observe the relationship between methylation and expression of WRN. Results. The WRN expression was significantly decreased in the ARC anterior lens capsules comparing with the control. The CpG island of WRN promoter in the ARC anterior lens capsules displayed hypermethylation comparing with the controls. The WRN promoter was almost fully methylated in the cortex of ARC and control lens. Acetylated H3 was lower while methylated H3-K9 was higher in ARC anterior lens capsules than that of the controls. The expression of WRN in HLEB-3 increased after demethylation of the cells. Conclusions. A hypermethylation in WRN promoter and altered histone modification in anterior lens capsules might contribute to the ARC mechanism. The data suggest an association of altered DNA repair capability in lens with ARC pathogenesis.
Collapse
|
26
|
The Genetics and the Genomics of Primary Congenital Glaucoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:321291. [PMID: 26451367 PMCID: PMC4588317 DOI: 10.1155/2015/321291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023]
Abstract
The sight is one of the five senses allowing an autonomous and high-quality life, so that alterations of any ocular component may result in several clinical phenotypes (from conjunctivitis to severe vision loss and irreversible blindness). Most parts of clinical phenotypes have been significantly associated with mutations in genes regulating the normal formation and maturation of the anterior segments of the eye. Among the eye anterior segment disorders, special attention is given to Glaucoma as it represents one of the major causes of bilateral blindness in the world, with an onset due to Mendelian or multifactorial genetic-causative traits. This review will point out the attention on the Primary Congenital Glaucoma (PCG), which is usually transmitted according to an autosomal-recessive inheritance pattern. Taking into consideration the genetic component of the PCG, it is possible to observe a strong heterogeneity concerning the disease-associated loci (GLC3), penetrance defects, and expressivity of the disease. Given the strong PGC heterogeneity, pre- and posttest genetic counseling plays an essential role in the achievement of an appropriate management of PCG, in terms of medical, social, and psychological impact of the disease.
Collapse
|
27
|
Abstract
PURPOSE To characterize the varied ocular manifestations of incontinentia pigmenti (IP) in a large pedigree. METHODS All available members of the kindred who were affected with IP were examined with ophthalmoscopy, wide-field color photos, and fluorescein angiography. RESULTS Individual family members demonstrated variable expression of retinopathy characteristic of IP. There was severe retinopathy in two eyes: one associated with concurrent persistent fetal vasculature and another with rhegmatogenous retinal detachment. Another individual with biopsy-confirmed IP demonstrated no retinopathy in either eye. When present, retinopathy manifested asymmetrically between eyes of the same individual. CONCLUSION Cutaneous manifestations of IP are irregular and nonuniform due to lyonization of the X chromosome. In this report, we identify asymmetric retinal disease between eyes in the same individual and variable retinal findings within the kindred. These differences may be explained by random inactivation of the X chromosome or other epigenetic modifications.
Collapse
|
28
|
Aboobakar IF, Allingham RR. Developments in Ocular Genetics: 2013 Annual Review. Asia Pac J Ophthalmol (Phila) 2014; 3:181-93. [PMID: 25097799 PMCID: PMC4119463 DOI: 10.1097/apo.0000000000000063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To highlight major advancements in ocular genetics from the year 2013. DESIGN Literature review. METHODS A literature search was conducted on PubMed to identify articles pertaining to genetic influences on human eye diseases. This review focuses on manuscripts published in print or online in the English language between January 1, 2013 and December 31, 2013. A total of 120 papers from 2013 were included in this review. RESULTS Significant progress has been made in our understanding of the genetic basis of a broad group of ocular disorders, including glaucoma, age-related macular degeneration, cataract, diabetic retinopathy, keratoconus, Fuchs' endothelial dystrophy, and refractive error. CONCLUSIONS The latest next-generation sequencing technologies have become extremely effective tools for identifying gene mutations associated with ocular disease. These technological advancements have also paved the way for utilization of genetic information in clinical practice, including disease diagnosis, prediction of treatment response and molecular interventions guided by gene-based knowledge.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|