1
|
Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, Nair RM. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. FRONTIERS IN PLANT SCIENCE 2023; 13:1101862. [PMID: 36714780 PMCID: PMC9878403 DOI: 10.3389/fpls.2022.1101862] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/12/2023]
Abstract
Soil salinity, a growing issue worldwide, is a detrimental consequence of the ever-changing climate, which has highlighted and worsened the conditions associated with damaged soil quality, reduced agricultural production, and decreasing land areas, thus resulting in an unsteady national economy. In this review, halo-tolerant plant growth-promoting rhizo-microbiomes (PGPRs) are evaluated in the salinity-affected agriculture as they serve as excellent agents in controlling various biotic-abiotic stresses and help in the augmentation of crop productivity. Integrated efforts of these effective microbes lighten the load of agro-chemicals on the environment while managing nutrient availability. PGPR-assisted modern agriculture practices have emerged as a green strategy to benefit sustainable farming without compromising the crop yield under salinity as well as salinity-affected supplementary stresses including increased temperature, drought, salinity, and potential invasive plant pathogenicity. PGPRs as bio-inoculants impart induced systemic tolerance (IST) to plants by the production of volatile organic compounds (VOCs), antioxidants, osmolytes, extracellular polymeric substances (EPS), phytohormones, and ACC-deaminase and recuperation of nutritional status and ionic homeostasis. Regulation of PGPR-induced signaling pathways such as MAPK and CDPK assists in salinity stress alleviation. The "Next Gen Agriculture" consists of the application of designer crop microbiomes through gene editing tools, for instance, CRISPR, and engineering of the metabolic pathways of the microbes so as to gain maximum plant resistance. The utilization of omics technologies over the traditional approaches can fulfill the criteria required to increase crop yields in a sustainable manner for feeding the burgeoning population and augment plant adaptability under climate change conditions, ultimately leading to improved vitality. Furthermore, constraints such as the crop specificity issue of PGPR, lack of acceptance by farmers, and legal regulatory aspects have been acknowledged while also discussing the future trends for product commercialization with the view of the changing climate.
Collapse
Affiliation(s)
- Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Ramakrishnan Madhavan Nair
- World Vegetable Centre, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
2
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
3
|
Abideen Z, Hanif M, Munir N, Nielsen BL. Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050691. [PMID: 35270161 PMCID: PMC8912827 DOI: 10.3390/plants11050691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Plant salinity resistance results from a combination of responses at the physiological, molecular, cellular, and metabolic levels. This article focuses on plant stress tolerance mechanisms for controlling ion homeostasis, stress signaling, hormone metabolism, anti-oxidative enzymes, and osmotic balance after nanoparticle applications. Nanoparticles are used as an emerging tool to stimulate specific biochemical reactions related to plant ecophysiological output because of their small size, increased surface area and absorption rate, efficient catalysis of reactions, and adequate reactive sites. Regulated ecophysiological control in saline environments could play a crucial role in plant growth promotion and survival of plants under suboptimal conditions. Plant biologists are seeking to develop a broad profile of genes and proteins that contribute to plant salt resistance. These plant metabolic profiles can be developed due to advancements in genomic, proteomic, metabolomic, and transcriptomic techniques. In order to quantify plant stress responses, transmembrane ion transport, sensors and receptors in signaling transduction, and metabolites involved in the energy supply require thorough study. In addition, more research is needed on the plant salinity stress response based on molecular interactions in response to nanoparticle treatment. The application of nanoparticles as an aspect of genetic engineering for the generation of salt-tolerant plants is a promising area of research. This review article addresses the use of nanoparticles in plant breeding and genetic engineering techniques to develop salt-tolerant crops.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan;
| | - Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
- Correspondence: (N.M.); (B.L.N.)
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (N.M.); (B.L.N.)
| |
Collapse
|
4
|
Xu T, Zhang L, Yang Z, Wei Y, Dong T. Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:665439. [PMID: 34220888 PMCID: PMC8247772 DOI: 10.3389/fpls.2021.665439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Abstract
Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.
Collapse
Affiliation(s)
- Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Tao Xu,
| | - Long Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhengmei Yang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Tingting Dong,
| |
Collapse
|
5
|
Goswami K, Mittal D, Gautam B, Sopory SK, Sanan-Mishra N. Mapping the Salt Stress-Induced Changes in the Root miRNome in Pokkali Rice. Biomolecules 2020; 10:E498. [PMID: 32218214 PMCID: PMC7226372 DOI: 10.3390/biom10040498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
A plant's response to stress conditions is governed by intricately coordinated gene expression. The microRNAs (miRs) have emerged as relatively new players in the genetic network, regulating gene expression at the transcriptional and post-transcriptional level. In this study, we performed comprehensive profiling of miRs in roots of the naturally salt-tolerant Pokkali rice variety to understand their role in regulating plant physiology in the presence of salt. For comparisons, root miR profiles of the salt-sensitive rice variety Pusa Basmati were generated. It was seen that the expression levels of 65 miRs were similar for roots of Pokkali grown in the absence of salt (PKNR) and Pusa Basmati grown in the presence of salt (PBSR). The salt-induced dis-regulations in expression profiles of miRs showed controlled changes in the roots of Pokkali (PKSR) as compared to larger variations seen in the roots of Pusa Basmati. Target analysis of salt-deregulated miRs identified key transcription factors, ion-transporters, and signaling molecules that act to maintain cellular Ca2+ homeostasis and limit ROS production. These miR:mRNA nodes were mapped to the Quantitative trait loci (QTLs) to identify the correlated root traits for understanding their significance in plant physiology. The results obtained indicate that the adaptability of Pokkali to excess salt may be due to the genetic regulation of different cellular components by a variety of miRs.
Collapse
Affiliation(s)
- Kavita Goswami
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
- Department of Computational Biology and Bioinformatics, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom university of Agriculture, Technology and Sciences, Prayagraj (Formally Allahabad) 211007, India
| | - Deepti Mittal
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom university of Agriculture, Technology and Sciences, Prayagraj (Formally Allahabad) 211007, India
| | - Sudhir K. Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India (S.K.S.)
| |
Collapse
|
6
|
Goel S, Goswami K, Pandey VK, Pandey M, Sanan-Mishra N. Identification of microRNA-target modules from rice variety Pusa Basmati-1 under high temperature and salt stress. Funct Integr Genomics 2019; 19:867-888. [PMID: 31127449 DOI: 10.1007/s10142-019-00673-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
High temperature and salinity stress are major factors limiting the growth and productivity of rice crop on a global scale. It is therefore an essential prerequisite to understand the molecular genetic regulation of plant responses to dual stresses. MicroRNAs (miRs) are recognized as key controllers of gene expression which act mainly at the post-transcriptional level to regulate various aspects of plant development. The present study attempts to investigate the miR circuits that are modulated in response to high temperature and salinity stress in rice. To gain insights into the pathway, preliminary miR profiles were generated using the next-generation sequencing (NGS) datasets. The identified molecules were filtered on the basis of fold differential regulation under high temperature, and time kinetics of their expression under the two individual stresses was followed to capture the regulatory windows. The analysis revealed the involvement of common miR regulatory nodes in response to two different abiotic stresses, thereby broadening our perspective about the stress-mediated regulatory mechanisms operative in rice.
Collapse
Affiliation(s)
- Shikha Goel
- Discipline of Biochemistry, SOS, Indira Gandhi National Open University, New Delhi, 110068, India.,Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kavita Goswami
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Vimal K Pandey
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Maneesha Pandey
- Discipline of Biochemistry, SOS, Indira Gandhi National Open University, New Delhi, 110068, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
7
|
|