1
|
Li Y, Liu C, Xin L, Liu C, Cao J, Yue Z, Sheng J, Yuan Y, Zhou Q, Liu Z. Upregulation of E-cadherin by the combination of methionine restriction and HDAC2 intervention for inhibiting gastric carcinoma metastasis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:62-70. [PMID: 38143381 PMCID: PMC11000262 DOI: 10.3724/abbs.2023244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/27/2023] [Indexed: 12/26/2023] Open
Abstract
Invasion and metastasis are the leading causes of death in individuals with malignant tumors, including gastric cancer. In this study, we aim to explore the effect and related mechanisms of methionine restriction (MR) on gastric carcinoma metastasis. In the MR cell model, gastric carcinoma cells are cultured in the MR medium, and in the animal model, BALB/c nude rodents are administered with a methionine-free diet after receiving injections of MKN45 cells into the caudal vein. Transwell assay is used to detect cell invasion and migration. Chromatin immunoprecipitation is performed to investigate the levels of H3K9me2, H3K27Ac, and H3K27me3 in the E-cadherin promoter. The results show that MR inhibits gastric carcinoma cell migration, invasion, and lung metastasis. MR increases E-cadherin while reducing the H3K27me3 level in the E-cadherin promoter. E-cadherin expression in gastric carcinoma cells is adversely regulated by HDAC2. Overexpressing HDAC2 reduces the H3K27Ac level in the E-cadherin promoter, while interfering with HDAC2 increases the H3K27Ac level. HDAC2 interference under MR conditions further upregulates E-cadherin expression and inhibits gastric carcinoma cell migration, invasion, and lung metastasis. MR combined with HDAC2 interference promotes E-cadherin expression by mediating the methylation and acetylation of E-cadherin, thus inhibiting the invasion, migration, and lung metastasis of gastric carcinoma cells. Our study provides a new theoretical basis for the inhibitory effect of MR on gastric cancer.
Collapse
Affiliation(s)
- Yifan Li
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Chenxi Liu
- Excellent Ophthalmology Class
221School of Ophthalmology & OptometryNanchang UniversityNanchang330006China
| | - Lin Xin
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Chuan Liu
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Jiaqing Cao
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Zhenqi Yue
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Jie Sheng
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Yiwu Yuan
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Qi Zhou
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| | - Zhiyang Liu
- Department of General Surgerythe Second Affiliated Hospital of Nanchang
UniversityNanchang 330006ChinaNanchang UniversityNanchang330006China
| |
Collapse
|
2
|
Yao Y, Liu Z, Cao Y, Guo H, Jiang B, Deng J, Xiong J. Downregulation of TRIM27 suppresses gastric cancer cell proliferation via inhibition of the Hippo-BIRC5 pathway. Pathol Res Pract 2020; 216:153048. [PMID: 32825933 DOI: 10.1016/j.prp.2020.153048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022]
Abstract
Although tripartite motif containing 27 (TRIM27) protein has been implicated in the progression of many cancer types, its role in gastric cancer (GC) remains poorly understood. Given that TRIM27 may be associated with the baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) gene, which is downstream of the Hippo pathway, we clarified their relationship in GC progression. In vitro cultures of 7 GC cell lines, 92 GC patient tumor samples and 46 normal clinical samples were used to examine the influence of changes in TRIM27 expression, which was assessed by quantitative PCR, immunohistochemistry, western blot analysis, and cell viability assays. We found that TRIM27 overexpression was correlated with tumor size, depth of invasion, and poor GC prognosis, while TRIM27 small interfering RNA knockdown inhibited cell proliferation and colony formation, induced apoptosis, and increased sensitivity towards 5-fluorouracil treatment in MGC-803 and HGC-27 GC cell lines. Notably, TRIM27 downregulation resulted in BIRC5 suppression via large tumor suppressor kinase 2 (LATS2) upregulation and subsequent Yes-associated protein 1 (YAP1) inhibition in MGC-803 and HGC-27 GC cell lines. In conclusion, our findings revealed the positive correlation between TRIM27 and GC progression through mediation of the Hippo-BIRC5 axis in GC.
Collapse
Affiliation(s)
- Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Zhen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Bailing Jiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
3
|
Nemtsova MV, Kalinkin AI, Kuznetsova EB, Bure IV, Alekseeva EA, Bykov II, Khorobrykh TV, Mikhaylenko DS, Tanas AS, Kutsev SI, Zaletaev DV, Strelnikov VV. Clinical relevance of somatic mutations in main driver genes detected in gastric cancer patients by next-generation DNA sequencing. Sci Rep 2020; 10:504. [PMID: 31949278 PMCID: PMC6965114 DOI: 10.1038/s41598-020-57544-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation profiling in gastric cancer (GC) enables main driver mutations to be identified and their clinical and prognostic value to be evaluated. We investigated 77 tumour samples of GC by next-generation sequencing (NGS) with the Ion AmpliSeq Hotspot Panel v2 and a custom panel covering six hereditary gastric cancer predisposition genes (BMPR1A, SMAD4, CDH1, TP53, STK11 and PTEN). Overall, 47 somatic mutations in 14 genes were detected; 22 of these mutations were novel. Mutations were detected most frequently in the CDH1 (13/47) and TP53 (12/47) genes. As expected, somatic CDH1 mutations were positively correlated with distant metastases (p = 0.019) and tumours with signet ring cells (p = 0.043). These findings confirm the association of the CDH1 mutations with diffuse GC type. TP53 mutations were found to be significantly associated with a decrease in overall survival in patients with Lauren diffuse-type tumours (p = 0.0085), T3-T4 tumours (p = 0.037), and stage III-IV tumours (p = 0.013). Our results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Alexey I Kalinkin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Ekaterina B Kuznetsova
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Irina V Bure
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Ekaterina A Alekseeva
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Igor I Bykov
- Department No. 1, Medical Faculty, Faculty Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Tatiana V Khorobrykh
- Department No. 1, Medical Faculty, Faculty Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Dmitry S Mikhaylenko
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation.,N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologiсal Center, Moscow, 105425, Russian Federation
| | - Alexander S Tanas
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Sergey I Kutsev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Dmitry V Zaletaev
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Vladimir V Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation.
| |
Collapse
|
4
|
Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and Noncoding RNAs in the Epithelial-mesenchymal Transition and Progression in Gastric Cancer. Int J Mol Sci 2019; 20:ijms20122870. [PMID: 31212809 PMCID: PMC6627057 DOI: 10.3390/ijms20122870] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) is thought to be at the root of invasive and metastatic cancer cell spreading. E-cadherin is an important player in this process, which forms the structures that establish and maintain cell–cell interactions. A partial or complete loss of E-cadherin expression in the EMT is presumably mediated by mechanisms that block the expression of E-cadherin regulators and involve the E-cadherin-associated transcription factors. The protein is involved in several oncogenic signaling pathways, such as the Wnt/β-catenin, Rho GTPase, and EGF/EGFR, whereby it plays a role in many tumors, including gastric cancer. Such noncoding transcripts as microRNAs and long noncoding RNAs—critical components of epigenetic control of gene expression in carcinogenesis—contribute to regulation of the E-cadherin function by acting directly or through numerous factors controlling transcription of its gene, and thus affecting not only cancer cell proliferation and metastasis, but also the EMT. This review focuses on the role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis.
Collapse
Affiliation(s)
- Irina V Bure
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Marina V Nemtsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| | - Dmitry V Zaletaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| |
Collapse
|
5
|
Gao C, Wu X, Zhai J, Shen J, Wang S, Shen L. Long non-coding RNA SNHG17 promotes gastric cancer progression by inhibiting P15 and P16. Transl Cancer Res 2019; 8:520-531. [PMID: 35116784 PMCID: PMC8798068 DOI: 10.21037/tcr.2019.04.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dysregulated long non-coding RNA (lncRNA) small nucleolar RNA host genes (SNHGs) have been demonstrated to be involved in gastric carcinogenesis and progression; however, the role of SNHG17 in gastric carcinoma remains to be investigated. We aimed to ascertain the expression of SNHG17 in gastric carcinoma tissues and cell lines, and to investigate its mechanistic role in this malignancy. METHODS The expression levels of SNHG17, P15, P16, P18, P19 and cyclin dependent kinases-4 (CDK4) were determined by real-time quantitative polymerase chain reaction (RT-qPCR) and/or western blotting in human gastric cancer tissues and cell lines. Correlations between SNHG17 levels and clinicopathological features were evaluated. siRNAs were used to silence SNHG17 in cell lines, and then Cell Counting Kit-8, colony formation, and transwell migration assays were used to assess proliferation, clonogenic potential, and migration, respectively. Flow cytometry was used to analyze cell cycle distributions and apoptosis. In vivo tumorigenicity was evaluated using xenografts in nude mice. RESULTS Analysis of The Cancer Genome Atlas (TCGA) database revealed that SNHG17 expression was remarkably higher in gastric carcinoma tissues than normal stomach mucosae (P=4.85×10-10). We confirmed that SNHG17 was overexpressed in gastric cancer tissues (P<0.0001) and cell lines (P<0.01) compared with corresponding noncancerous tissues and gastric epithelial cell line, respectively. Furthermore, SNHG17 levels in tumor tissues were associated with lymph node metastasis (P=0.0006), pTNM stage (P=0.0061), and lymphovascular invasion (P=0.0005), but were not associated with overall survival (OS) (P=0.888). Loss-of-function studies indicated that SNHG17 promoted gastric carcinoma cell proliferation in vitro and in vivo (P<0.01), and that SNHG17 enhanced gastric cancer cell migration (P<0.01). Mechanistically, we found that SNHG17 inhibited P15 and P16, and enhanced CDK4 expression, resulting in a G0/G1 cell cycle arrest, and that SNHG17 inhibited cell apoptosis. CONCLUSIONS These preliminary findings highlight the role of SNHG17 in gastric cancer, and suggest that it may be a novel indicator and/or a potential therapeutic target for diagnosing and/or treating gastric cancer.
Collapse
Affiliation(s)
- Cheng Gao
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of General Surgery, Affiliated Hai'an Hospital, Nantong University, Nantong 226600, China
| | - Xinqian Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Zhai
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shoulin Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|