1
|
Zhang W, Dao JJ, Li Q, Liu C, Qiao CM, Cui C, Shen YQ, Zhao WJ. Neuregulin 1 mitigated prolactin deficiency through enhancing TRPM8 signaling under the influence of melatonin in senescent pituitary lactotrophs. Int J Biol Macromol 2024; 275:133659. [PMID: 38969045 DOI: 10.1016/j.ijbiomac.2024.133659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.
Collapse
Affiliation(s)
- Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China; Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang 550000, Guizhou, China
| | - Ji-Ji Dao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Qian Li
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chong Liu
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Wang J, Miao X, Sun Y, Li S, Wu A, Wei C. Dopaminergic System in Promoting Recovery from General Anesthesia. Brain Sci 2023; 13:brainsci13040538. [PMID: 37190503 DOI: 10.3390/brainsci13040538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Dopamine is an important neurotransmitter that plays a biological role by binding to dopamine receptors. The dopaminergic system regulates neural activities, such as reward and punishment, memory, motor control, emotion, and sleep-wake. Numerous studies have confirmed that the dopaminergic system has the function of maintaining wakefulness in the body. In recent years, there has been increasing evidence that the sleep-wake cycle in the brain has similar neurobrain network mechanisms to those associated with the loss and recovery of consciousness induced by general anesthesia. With the continuous development and innovation of neurobiological techniques, the dopaminergic system has now been proved to be involved in the emergence from general anesthesia through the modulation of neuronal activity. This article is an overview of the dopaminergic system and the research progress into its role in wakefulness and general anesthesia recovery. It provides a theoretical basis for interpreting the mechanisms regulating consciousness during general anesthesia.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaolei Miao
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Sijie Li
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
5
|
Zhang F, Xue Q, Bai T, Wu F, Yan S. Postpartum Fatigue and Inhibited Lactation. Biol Res Nurs 2021; 24:128-139. [PMID: 34719282 DOI: 10.1177/10998004211050047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Postpartum fatigue is a common disorder worldwide and affects both physical and mental functioning. In breastfeeding women, Prolactin (PRL) is not only involved in immunoregulation, but also responsible for lactation. Prolactin levels in women with chronic fatigue are higher than normal, but a chronic fatigue state inhibits postpartum lactation in humans. Objectives: This paper explored the inhibition mechanism of lactation by postpartum fatigue in rats. Methods: Postpartum fatigue models were built by forcing mother rats to stand in water and divided into 3-hour, 9-hour and 15-hour per day fatigue groups according to the underwater time. Mother rats and their offspring were reunited in a dry cage for 90 minutes every 3 hours for feeding. The expression of PRL, PRL receptor (PRLR), Janus Kinase 2 (JAK 2), and Signal transducers and activators of transcription 5 (STAT5) mRNA were analyzed and the microstructure of mammary gland were observed under light and electron microscopy. Results: The expression of pituitary PRL mRNA and its downstream signaling pathway JAK2 and STAT5 mRNA were down-regulated in the severe postpartum fatigue rats. PRL mRNA responses were dose-related to duration of fatigue. The expression of PRLR mRNA increased. Postpartum fatigue led to functional degeneration of mammary gland. The breast lobules were shrunk and the number of alveoli were decreased. Few milk protein granules and fat droplets were observed in the cytoplasm under transmission electron microscope. Conclusion: Postpartum fatigue inhibits the lactation by down-regulating the expression of PRL and PRL-dependent signaling pathway in rats.
Collapse
Affiliation(s)
- Feng Zhang
- Medical College, 66479Nantong University, Nantong City, Jiangsu Province, China
| | - Qin Xue
- Medical College, 66479Nantong University, Nantong City, Jiangsu Province, China
| | - Ting Bai
- Medical College, 66479Nantong University, Nantong City, Jiangsu Province, China
| | - Fan Wu
- Medical College, 66479Nantong University, Nantong City, Jiangsu Province, China
| | - Shuhan Yan
- Medical College, 66479Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|
6
|
Murphy BA, Herlihy MM, Nolan MB, O'Brien C, Furlong JG, Butler ST. Identification of the blue light intensity administered to one eye required to suppress bovine plasma melatonin and investigation into effects on milk production in grazing dairy cows. J Dairy Sci 2021; 104:12127-12138. [PMID: 34419270 DOI: 10.3168/jds.2021-20526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 01/14/2023]
Abstract
Long-day photoperiod is known to positively affect milk production in confinement dairy systems, and it has been hypothesized that pineal melatonin (MT) secretion plays a substantial role in this process. Specialized mammalian photoreceptors that regulate MT secretion are optimally stimulated by short wavelength blue light. We investigated the blue light intensity administered to one eye required to suppress MT secretion in nonlactating dairy cows, and subsequently examined effects on milk production in grazing dairy cows. Following a 14-d light-dark 8:16 h environmental conditioning period, 5 nonlactating Holstein-Friesian cows were exposed to treatments of <1, 70, 125, 175, and 225 lx for 8 additional hours using a 5 × 5 Latin square design. Light was administered via headpieces fitted with light-emitting diodes emitting blue light (465 nm) to the right eye. All cows were then exposed to a light-dark 16:8 h cycle for one night via the indoor lighting system (>200 lx white light). Plasma samples collected at regular intervals were assayed for MT. A dose-dependent effect of light treatment on mean circulating MT concentrations (and 95% CI) was observed [9.4 (7.2, 12.3), 5.0 (3.8, 6.6), 4.4 (3.3, 5.7), 3.3 (2.5, 4.3) and 1.7 (1.3, 2.3) pg/mL for treatments of 0, 70, 125, 175, and 225 lx, respectively. Only the 225 lx treatment acutely suppressed plasma melatonin concentration to levels similar to the light-dark 16:8 h treatment [1.9 (1.4, 2.5) pg/mL]. Forty spring-calving cows were blocked on parity, calving date and Economic Breeding Index for milk production and assigned to the control treatment or blue light to a single eye (LT) treatment from calving through 32 wk of lactation. The cows assigned to LT treatment were fitted with headpieces providing 225 lx of blue light to the right eye from 1700 until 0000 h. Mean milk production (and 95% CI) during 32 wk of lactation was not affected by treatment [20.3 (19.3, 21.3) vs. 20.9 (19.8, 22.0) kg/d, control and LT, respectively]. Within multiparous cows, a treatment by week interaction was detected, whereby LT treatment increased milk production during the first 12 wk of lactation [25.8 (24.3, 27.3) vs. 28.0 (26.5, 29.5) kg/d; +8.5%], but had no effect thereafter. Treatment did not affect plasma insulin-like growth factor 1. We identified the blue light intensity to one eye required to acutely suppress MT concentrations. Transient favorable effects on milk production were observed in multiparous cows. It remains unclear how single-eye blue light treatment affects galactopoiesis in grazing dairy cows, and further research is needed to explore whether this modality of light delivery represents a useful means to aid productivity in pasture-based dairy systems.
Collapse
Affiliation(s)
- Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - Mary M Herlihy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Margaret B Nolan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - Christiane O'Brien
- Equilume Ltd., W9H Ladytown Business Park, Naas, Co. Kildare, Ireland W91 RT72
| | - John G Furlong
- School of Veterinary Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - Stephen T Butler
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
7
|
Cosso G, Mura MC, Pulinas L, Curone G, Vigo D, Carcangiu V, Luridiana S. Effects of melatonin treatment on milk traits, reproductive performance and immune response in Sarda dairy sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1904796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Giovanni Cosso
- Dipartimento di Medicina Veterinaria, University of Sassari, Sassari, Italy
| | | | - Luisa Pulinas
- Dipartimento di Medicina Veterinaria, University of Sassari, Sassari, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Vincenzo Carcangiu
- Dipartimento di Medicina Veterinaria, University of Sassari, Sassari, Italy
| | | |
Collapse
|
8
|
Ni Y, Chen Q, Cai J, Xiao L, Zhang J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol Cell Endocrinol 2021; 520:111084. [PMID: 33232781 DOI: 10.1016/j.mce.2020.111084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
The endocrine system plays a central role in many aspects of lactation, including mammogenesis (mammary gland development), lactogenesis (onset of lactation), and galactopoiesis (maintenance of milk secretion). Many hormones of the endocrine system directly or indirectly regulate lactation process. The secretion of prolactin (PRL), one of the most important lactation-related hormones, is inhibited by hypothalamus-pituitary dopaminergic system and stimulated by hypothalamus-pituitary oxytocinergic system. This hormone is essential in all stages of lactation. The growth hormone (GH) regulates metabolism and the distribution of nutrients between tissues mammary glands, and stimulates the production of IGF-I from the liver which binds to IGF-IR of mammary epithelial cells (MECs) to indirectly promote lactation. The synthesis and secretion of estrogen (E) are affected by the hypothalamus-pituitary axis. The hormone regulates duct morphogenesis and MECs proliferation. It also modulates the synthesis and secretion of PRL and GH, which together regulate the lactation in female animals. In this article, we reviewed the three main lactation-related hormones (PRL, GH, and E), summarize their regulation by the hypothalamus-pituitary axis and how they influence lactation.
Collapse
Affiliation(s)
- Yifan Ni
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Cai
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Ma X. Protein Metabolism in Host Gastrointestinal Tract. Curr Protein Pept Sci 2020; 21:742-743. [PMID: 33210583 DOI: 10.2174/138920372108200923163047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University (CAU) Beijing, China
| |
Collapse
|