1
|
Wang P, Xiao X, Yang Y, Liang G, Lu S, Tang L, Huang H, He J, Tong X. The Silkworm ( Bombyx mori) Neuropeptide Orcokinin's Efficiency in Whitening and Skincare. Int J Mol Sci 2025; 26:961. [PMID: 39940730 PMCID: PMC11817372 DOI: 10.3390/ijms26030961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The silkworm neuropeptide Orcokinin (abbreviated as BommoOK) is equipped with multiple biological functions, one of which acts as a pigmentation inhibitor. To explore the whitening efficiency of BommoOK, the inhibitory effects on tyrosinase and its adaptability on the cell for six mature peptides of BommoOK were investigated in this paper. At the same time, BommoOKA_type4, the peptide with the best melanin inhibition effect, was used as an additive to prepare a whitening cream, and the effects on skin moisture, oil content, fine lines, skin glossiness, pores, and pigment depth were determined. The results revealed that the cream added with BommoOKA_type4 peptide showed a good improvement effect on the skin, especially in significantly reducing the pigment depths of skin. The results displayed a potential application of BommoOK in whitening and skincare products as an excellent additive and provide certain references for the mechanism research of BommoOK in inhibiting melanin synthesis.
Collapse
Affiliation(s)
- Pingyang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Xiao Xiao
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Ya Yang
- College of Sports and Health Sciences, Guangxi University for Nationalities, Nanning 530006, China;
| | - Guiqiu Liang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Shengtao Lu
- College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Liang Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Hongyan Huang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Ji He
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Guangxi Sericultural Technology Promotion Station, Nanning 530007, China; (X.X.); (G.L.); (L.T.); (H.H.); (J.H.)
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
| |
Collapse
|
2
|
Wang J, Wang E, Cheng S, Ma A. Genetic insights into superior grain number traits: a QTL analysis of wheat-Agropyron cristatum derivative pubing3228. BMC PLANT BIOLOGY 2024; 24:271. [PMID: 38605289 PMCID: PMC11008026 DOI: 10.1186/s12870-024-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China.
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China.
| | - Erwei Wang
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| | - Shiping Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, North to Weilailu road, New district, Pingdingshan, Henan, 467000, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Aichu Ma
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, 467001, China
| |
Collapse
|
3
|
Li G, Qiu J, Cao H, Zheng L, Chi C, Li S, Zhou X. Molecular Characterization, Expression and In Situ Hybridization Analysis of a Pedal Peptide/Orcokinin-type Neuropeptide in Cuttlefish Sepiella japonica. Curr Protein Pept Sci 2024; 25:326-338. [PMID: 38243942 DOI: 10.2174/0113892037255378231101065721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain. METHODS Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK. RESULTS in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation. CONCLUSION The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.
Collapse
Affiliation(s)
- Gong Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiayin Qiu
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huimin Cao
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Libing Zheng
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Changfeng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuang Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xu Zhou
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Rao R, Shen H. Onchidium reevesii may be able to distinguish low-frequency sound to discriminate the state of tides. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rongcheng Rao
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| | - Heding Shen
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Zarghami Dehaghani M, Yousefi F, Bagheri B, Seidi F, Hamed Mashhadzadeh A, Rabiee N, Zarrintaj P, Mostafavi E, Saeb MR, Kim YC. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. Int J Nanomedicine 2021; 16:4277-4288. [PMID: 34194228 PMCID: PMC8238539 DOI: 10.2147/ijn.s313855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Antimicrobial peptides are potential therapeutics as anti-bacteria, anti-viruses, anti-fungi, or anticancers. However, they suffer from a short half-life and drug resistance which limit their long-term clinical usage. Methods Herein, we captured the encapsulation of antimicrobial peptide HA-FD-13 into boron nitride nanotube (BNNT) (20,20) and its release due to subsequent insertion of BNNT (14,14) with molecular dynamics simulation. Results The peptide-BNNT (20,20) van der Waals (vdW) interaction energy decreased to −270 kcal·mol−1 at the end of the simulation (15 ns). However, during the period of 0.2–1.8 ns, when half of the peptide was inside the nanotube, the encapsulation was paused due to an energy barrier in the vicinity of BNNT and subsequently the external intervention, such that the self-adjustment of the peptide allowed full insertion. The free energy of the encapsulation process was −200.12 kcal·mol−1, suggesting that the insertion procedure occurred spontaneously. Discussion Once the BNNT (14,14) entered into the BNNT (20,20), the peptide was completely released after 83.8 ps. This revealed that the vdW interaction between the BNNT (14,14) and BNNT (20,20) was stronger than between BNNT (20,20) and the peptide; therefore, the BNNT (14,14) could act as a piston pushing the peptide outside the BNNT (20,20). Moreover, the sudden drop in the vdW energy between nanotubes to the value of the −1300 Kcal·mol−1 confirmed the self-insertion of the BNNT (14,14) into the BNNT (20,20) and correspondingly the release of the peptide.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Amin Hamed Mashhadzadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-3516, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|