1
|
Nolan VC, Harrison J, Cox JA. Manuka honey in combination with azithromycin shows potential for improved activity against Mycobacterium abscessus. Cell Surf 2022; 8:100090. [DOI: 10.1016/j.tcsw.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
2
|
Achary R, Kim HR, Lee HK. Stereoselective Synthesis of Highly Functionalized 5- and 6-Membered Aminocyclitols Starting with a Readily Available 2-Azetidinone. J Org Chem 2019; 84:4263-4272. [PMID: 30870595 DOI: 10.1021/acs.joc.9b00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselective transformations of 4-vinyl-2-azetidinone derivative 4 into a variety of highly functionalized 6- and 5-membered carbocyclic compounds 7 and 9 were carried out using sequences involving sequential C1-N bond cleavage and Ru-catalyzed ring-closing metathesis. The derived carbocycles were further transformed into polyhydroxylated 6- and 5-membered aminocyclitols.
Collapse
Affiliation(s)
- Raghavendra Achary
- Korea Chemical Bank , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea
| | - Hyeong Rae Kim
- Korea Chemical Bank , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea.,Department of Medicinal Chemistry and Pharmacology , University of Science and Technology , 113 Gwahango , Yuseong, Daejeon 305-333 , Korea
| | - Hyeon-Kyu Lee
- Korea Chemical Bank , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea.,Department of Medicinal Chemistry and Pharmacology , University of Science and Technology , 113 Gwahango , Yuseong, Daejeon 305-333 , Korea
| |
Collapse
|
3
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
5
|
|
6
|
Gurale BP, Shashidhar MS, Gonnade RG. Synthesis of the aminocyclitol units of (-)-hygromycin A and methoxyhygromycin from myo-inositol. J Org Chem 2012; 77:5801-7. [PMID: 22663090 DOI: 10.1021/jo300444b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Concise and efficient syntheses of the aminocyclitol cores of hygromycin A (HMA) and methoxyhygromycin (MHM) have been achieved starting from readily available myo-inositol. Reductive cleavage of myo-inositol orthoformate to the corresponding 1,3-acetal, stereospecific introduction of the amino group via the azide, and resolution of a racemic cyclitol derivative as its diastereomeric mandelate esters are the key steps in the synthesis. Synthesis of the aminocyclitol core of hygromycin A involved chromatography in half of the total number of steps, and the aminocyclitol core of methoxyhygromycin involved only one chromatography.
Collapse
Affiliation(s)
- Bharat P Gurale
- Division of Organic Chemistry, National Chemical Laboratory, Dr. Homibhabha Road, Pune-411 008, India
| | | | | |
Collapse
|
7
|
Novel synthesis of methyl 4,6-O-benzylidenespiro[2-deoxy-α-d-arabino-hexopyranoside-2,2′-imidazolidine] and its homologue and sugar-γ-butyrolactam derivatives from methyl 4,6-O-benzylidene-α-d-arabino-hexopyranosid-2-ulose. Carbohydr Res 2010; 345:839-43. [DOI: 10.1016/j.carres.2010.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 11/20/2022]
|
8
|
Pathak T, Bhattacharya R. A vinyl sulfone-modified carbohydrate mediated new route to aminosugars and branched-chain sugars. Carbohydr Res 2008; 343:1980-98. [DOI: 10.1016/j.carres.2008.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 11/30/2022]
|
9
|
Frlan R, Kovač A, Blanot D, Gobec S, Pečar S, Obreza A. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents. Molecules 2008; 13:11-30. [PMID: 18259126 PMCID: PMC6245483 DOI: 10.3390/molecules13010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/23/2007] [Accepted: 12/23/2007] [Indexed: 11/16/2022] Open
Abstract
A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC50 values as low as 30 μM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.
Collapse
Affiliation(s)
- Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Tel.: (+386) 14769677; Fax: (+386) 14258031
| | - Andreja Kovač
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Tel.: (+386) 14769677; Fax: (+386) 14258031
| | - Didier Blanot
- Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Tel.: (+386) 14769677; Fax: (+386) 14258031
| | - Slavko Pečar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Tel.: (+386) 14769677; Fax: (+386) 14258031
- “Jožef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Aleš Obreza
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Tel.: (+386) 14769677; Fax: (+386) 14258031
- Author to whom correspondence should be addressed; e-mail:
| |
Collapse
|
10
|
Abstract
The introduction of new antibiotic compounds into therapy initiates the development of resistance by the target bacteria. Resistance increases the risk of treatment failure with potentially serious consequences. Local application of antibacterial compounds to the eyes may lead to bacterial resistance in bacterial isolates from the eyes. The incidence of resistant strains of common pathogens is probably increasing. As compounds can be absorbed into the systemic circulation following ocular administration, the subsequent low concentrations in the blood could provide the selective pressure for the survival of resistant bacteria in the body. Despite this possibility, there are no reports of systemic resistance in bacteria following ocular administration of antibacterial compounds. All health-care professionals should be concerned about this possibility and continue to use these important compounds with respect.
Collapse
Affiliation(s)
- Lindsay Brown
- School of Biomedical Sciences, the University of Queensland, Queensland, Australia.
| |
Collapse
|
11
|
Soler Bistué AJC, Ha H, Sarno R, Don M, Zorreguieta A, Tolmasky ME. External guide sequences targeting the aac(6')-Ib mRNA induce inhibition of amikacin resistance. Antimicrob Agents Chemother 2007; 51:1918-25. [PMID: 17387154 PMCID: PMC1891410 DOI: 10.1128/aac.01500-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dissemination of AAC(6')-I-type acetyltransferases have rendered amikacin and other aminoglycosides all but useless in some parts of the world. Antisense technologies could be an alternative to extend the life of these antibiotics. External guide sequences are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. Thirteen-nucleotide external guide sequences complementary to locations within five regions accessible for interaction with antisense oligonucleotides in the mRNA that encodes AAC(6')-Ib were analyzed. While small variations in the location targeted by different external guide sequences resulted in big changes in efficiency of binding to native aac(6')-Ib mRNA, most of them induced high levels of RNase P-mediated cleavage in vitro. Recombinant plasmids coding for selected external guide sequences were introduced into Escherichia coli harboring aac(6')-Ib, and the transformant strains were tested to determine their resistance to amikacin. The two external guide sequences that showed the strongest binding efficiency to the mRNA in vitro, EGSC3 and EGSA2, interfered with expression of the resistance phenotype at different degrees. Growth curve experiments showed that E. coli cells harboring a plasmid coding for EGSC3, the external guide sequence with the highest mRNA binding affinity in vitro, did not grow for at least 300 min in the presence of 15 mug of amikacin/ml. EGSA2, which had a lower mRNA-binding affinity in vitro than EGSC3, inhibited the expression of amikacin resistance at a lesser level; growth of E. coli harboring a plasmid coding for EGSA2, in the presence of 15 mug of amikacin/ml was undetectable for 200 min but reached an optical density at 600 nm of 0.5 after 5 h of incubation. Our results indicate that the use of external guide sequences could be a viable strategy to preserve the efficacy of amikacin.
Collapse
Affiliation(s)
- Alfonso J C Soler Bistué
- Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | |
Collapse
|
12
|
Serrano P, Casas J, Zucco M, Emeric G, Egido-Gabás M, Llebaria A, Delgado A. Combinatorial Approach to N-Substituted Aminocyclitol Libraries by Solution-Phase Parallel Synthesis and Preliminary Evaluation as Glucocerebrosidase Inhibitors. ACTA ACUST UNITED AC 2006; 9:43-52. [PMID: 17206831 DOI: 10.1021/cc060080o] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Libraries of N-substituted aminocyclitol derivatives of the scyllo and racemic chiro series by means of parallel solution-phase methodology with the help of robotic technology are described. Chemical diversity has been introduced by reaction of selected scaffolds with a set of aldehydes, acyl chlorides, sulfonyl chlorides, chloroformates, and amines to afford the corresponding amines, amides, sulfonamides, carbamates and ureas, respectively. The optimized methodology has proven excellent, in terms of overall purities of the resulting libraries, for the production of amides. Sulfonamides and carbamates have been obtained in slightly lower purities, while amines afforded modest results. Selected library members have been evaluated as inhibitors of recombinant glucocerebrosidase with K(i) values ranging in the low micromolar scale for the most active members.
Collapse
Affiliation(s)
- Pedro Serrano
- Research Unit on Bioactive Molecules (RUBAM), Department of Organic and Biological Chemistry, Chemical and Environmental Research Institute of Barcelona (IIQAB-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Das I, Pathak T. Desulfonylation with Mg−MeOH−NiBr2: An Expedient Reagent System for the Synthesis of 2-Amino-2,3-dideoxy Furanosides. Org Lett 2006; 8:1303-6. [PMID: 16562877 DOI: 10.1021/ol053082a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A catalytic amount of NiBr(2) with Mg-MeOH increases the efficiency of reductive desulfonylation of the beta-sulfonylated aminosugars. The Mg-MeOH-NiBr(2) system has been utilized in the synthesis of 2-amino-2,3-dideoxypentofuranosides and 2-amino-2,3-dideoxyhexofuranosides. The yield of the desulfonylation improved dramatically from 0% with the known reagents to 44-75% with Mg-MeOH-NiBr(2).
Collapse
Affiliation(s)
- Indrajit Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| | | |
Collapse
|
14
|
Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 2006; 70:140-50. [PMID: 16391922 DOI: 10.1007/s00253-005-0279-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/23/2005] [Accepted: 11/27/2005] [Indexed: 11/26/2022]
Abstract
Aminoglycosides are potent bactericidal antibiotics targeting the bacterial ribosome, where they bind to the A-site and disrupt protein synthesis. They are particularly active against aerobic, Gram-negative bacteria and act synergistically against certain Gram-positive organisms. Aminoglycosides are used in the treatment of severe infections of the abdomen and urinary tract, bacteremia, and endocarditis. They are also used for prophylaxis, especially against endocarditis. Bacterial resistance to aminoglycosides continues to escalate and is widely recognized as a serious health threat. This might be the reason for the interest in understanding the mechanisms of resistance. It is now clear that the resistance occurs by different mechanisms such as prevention of drug entry, active extrusion of drugs, alteration of the drug target (mutational modification of 16S rRNA and mutational modification of ribosomal proteins), and enzymatic inactivation through the expression of enzymes, which covalently modify these antibiotics. Enzymatic inactivation is normally due to acetyltransferases, nucleotidyltransferases, and phosphotransferases. In this review, we focus on the recent concept of molecular understanding of aminoglycoside action and resistance.
Collapse
Affiliation(s)
- S Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi
| | | |
Collapse
|
15
|
Rao Y, Venot A, Swayze EE, Griffey RH, Boons GJ. Trisaccharide mimetics of the aminoglycoside antibiotic neomycin. Org Biomol Chem 2006; 4:1328-37. [PMID: 16557321 DOI: 10.1039/b517725a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly convergent approach for the chemical synthesis of eight structurally related trisaccharides that contain 3 to 5 amino groups has been described. Fourier-transformation ion cyclotron resonance mass spectrometry (FT-ICR MS) has been employed to determine the dissociation constants (Kd) for the binding of the trisaccharides to a prototypical fragment of 16S ribosomal RNA. A compound that contained a 4,6-dideoxy-4-amino-beta-D-glucopyranoside moiety at C-3 displayed binding in the low micromolar range. It was found that small structural changes of the saccharides resulted in large differences in affinity. The described structure-activity relationship is expected to be valuable for the development of novel antibiotics that target rRNA.
Collapse
Affiliation(s)
- Yu Rao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
16
|
Franceschi F, Duffy EM. Structure-based drug design meets the ribosome. Biochem Pharmacol 2006; 71:1016-25. [PMID: 16443192 DOI: 10.1016/j.bcp.2005.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/08/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
The high-resolution structures of the bacterial ribosomal subunits and those of their complexes with antibiotics have advanced significantly our understanding of small-molecule interactions with RNA. The wealth of RNA structural data generated by these structures has allowed computational chemists to employ a drug discovery paradigm focused on RNA-based targets. The structures also show how target-based resistance affects antibiotics acting at the level of the ribosome. Not only are the sites pinpointed where different classes of antibiotics inhibit protein synthesis, but their orientations, relative dispositions, and unique mechanisms of action are also revealed at the atomic level. Both the 30S and the 50S ribosomal subunits have been shown to be "targets of targets", offering several adjacent, functionally relevant binding pockets for antibiotics. It is the detailed knowledge of these validated locations, or ribofunctional loci, plus the mapping of the resistance hot-spots that allow the rational design of next-generation antibacterials. When the structural information is combined with a data-driven computational toolkit able to describe and predict molecular properties appropriate for bacterial cell penetration and drug-likeness, a structure-based drug design approach for novel antibacterials shows great promise.
Collapse
Affiliation(s)
- François Franceschi
- Rib-X Pharmaceuticals, Inc., 300 George Street, Suite 301, New Haven, CT 06511, USA.
| | | |
Collapse
|
17
|
Sutcliffe JA. Improving on nature: antibiotics that target the ribosome. Curr Opin Microbiol 2005; 8:534-42. [PMID: 16111914 DOI: 10.1016/j.mib.2005.08.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance, along with the resolution of antibiotic-ribosomal subunit complexes at the atomic level, has provided new insights into modifications of clinically relevant antimicrobials that target the ribosome. Modifications to the aminoglycoside or negamycin scaffolds have been reported in the past, but few derivatives appear to be greatly improved compared to their parent compound. Computational and/or traditional screening efforts have yielded novel compounds that bind to the decoding site of the small (30S) ribosomal subunit; naphthyridones appear to bind only in the presence of poly(U) and tRNA(Phe), whereas quinolines bind in a similar manner to aminoglycosides. Streptogramin B analogs were designed that have an amide replacement of the labile ester bond. The resultant molecules were not substrates for the inactivating lyase, but were no longer inhibitors of translation. The synthesis of 16-membered macrolides that are modified at the C6 position with peptidyl moieties as well as conjugates of chloramphenicol to either nucleotide groups or pyrene have been described, but no antibacterial activity has been reported. X-ray crystal structures are now available that can be used to improve on natural or synthetic antibiotics that bind to either the 30S or the 50S ribosomal subunit.
Collapse
|
18
|
Jana S, Deb JK. Kinetic mechanism of streptomycin adenylyltransferase from a recombinant Escherichia coli. Biotechnol Lett 2005; 27:519-24. [PMID: 15928860 DOI: 10.1007/s10529-005-2544-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 02/14/2005] [Indexed: 11/25/2022]
Abstract
Bacterial resistance to the aminoglycoside antibiotics is manifested primarily by enzymic modification of these drugs. One important mechanism of streptomycin modification is through ATP-dependent O-adenylation, catalyzed by streptomycin adenylyltransferase. Initial velocity patterns deduced from steady state kinetics indicate a sequential mechanism. Dead-end inhibition by tobramycin and neomycin is non-competitive versus streptomycin and uncompetitive versus ATP, indicative of ordered substrate binding where ATP binds first and then streptomycin. These results surmise that streptomycin adenylyltransferase follows an ordered, sequential kinetic mechanism in which one substrate (ATP) binds prior to the antibiotic and pyrophosphate is released prior to formation of AMP-streptomycin.
Collapse
Affiliation(s)
- Snehasis Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| | | |
Collapse
|