Wei F, Kang D, Cherukupalli S, Zalloum WA, Zhang T, Liu X, Zhan P. Discovery and optimizing polycyclic pyridone compounds as anti-HBV agents.
Expert Opin Ther Pat 2020;
30:715-721. [PMID:
32746660 DOI:
10.1080/13543776.2020.1801641]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION
Hepatitis B disease is caused by the hepatitis B virus (HBV), which is a DNA virus that belongs to the Hepadnaviridae family. It is a considerable health burden, with 257 million active cases globally. Long-standing infection may create a fundamental cause of liver disease and chronic infections, including cirrhosis, hepatocellular, and carcinoma liver failure. There is an urgent need to develop novel, safe, and effective drug candidates with a novel mechanism of action, improved activity, efficacy, and cure rate.
AREAS COVERED
Herein, the authors provide a concise report focusing on a general and cutting-edge overview of the current state of polycyclic pyridone-related anti-HBV agent patents from 2016 to 2018 and some future perspectives.
EXPERT OPINION
In medicinal chemistry, high-throughput screening (HTS), hit-to-lead optimization (H2L), bioisosteric replacement, and scaffold hopping approaches are playing a major role in the discovery and development of HBV inhibitors. Developing polycyclic pyridone-related anti-HBV agents that could target host factors has attracted significant interest and attention in recent years.
Collapse