1
|
Bollati M, Fasola E, Pieraccini S, Freddi F, Cocomazzi P, Oliva F, Klußmann M, Maspero A, Piarulli U, Ferrara S, Pellegrino S, Bertoni G, Gazzola S. Impairing protein-protein interactions in an essential tRNA modification complex: An innovative antimicrobial strategy against Pseudomonas aeruginosa. J Pept Sci 2024:e3658. [PMID: 39434676 DOI: 10.1002/psc.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Protein-protein interactions (PPIs) have been recognized as a promising target for the development of new drugs, as proved by the growing number of PPI modulators reaching clinical trials. In this context, peptides represent a valid alternative to small molecules, owing to their unique ability to mimic the target protein structure and interact with wider surface areas. Among the possible fields of interest, bacterial PPIs represent an attractive target to face the urgent necessity to fight antibiotic resistance. Growing attention has been paid to the YgjD/YeaZ/YjeE complex responsible for the essential t6A37 tRNA modification in bacteria. We previously identified an α-helix on the surface of Pseudomonas aeruginosa YeaZ, crucial for the YeaZ-YeaZ homodimer formation and the conserved YeaZ-YgjD interactions. Herein, we present our studies for impairing the PPIs involved in the formation of the YeaZ dimers through synthetic peptide derivatives of this helical moiety, both in vitro with purified components and on P. aeruginosa cells. Our results proved the possibility of targeting those PPIs which are usually essential for protein functioning and thus are refractory to mutational changes and antibiotic resistance development.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Elettra Fasola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | | | - Francesca Freddi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Cocomazzi
- Institute of Biophysics, National Research Council, Milan, Italy
| | - Francesco Oliva
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Merlin Klußmann
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Silvia Ferrara
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Gazzola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| |
Collapse
|
2
|
Wang Q, Kline EC, Gilligan-Steinberg SD, Lai JJ, Hull IT, Olanrewaju AO, Panpradist N, Lutz BR. Sensitive Pathogen Detection and Drug Resistance Characterization Using Pathogen-Derived Enzyme Activity Amplified by LAMP or CRISPR-Cas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.29.24305085. [PMID: 38633802 PMCID: PMC11023665 DOI: 10.1101/2024.03.29.24305085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Pathogens encapsulate or encode their own suite of enzymes to facilitate replication in the host. The pathogen-derived enzymes possess specialized activities that are essential for pathogen replication and have naturally been candidates for drug targets. Phenotypic assays detecting the activities of pathogen-derived enzymes and characterizing their inhibition under drugs offer an opportunity for pathogen detection, drug resistance testing for individual patients, and as a research tool for new drug development. Here, we used HIV as an example to develop assays targeting the reverse transcriptase (RT) enzyme encapsulated in HIV for sensitive detection and phenotypic characterization, with the potential for point-of-care (POC) applications. Specifically, we targeted the complementary (cDNA) generation activity of the HIV RT enzyme by adding engineered RNA as substrates for HIV RT enzyme to generate cDNA products, followed by cDNA amplification and detection facilitated by loop-mediated isothermal amplification (LAMP) or CRISPR-Cas systems. To guide the assay design, we first used qPCR to characterize the cDNA generation activity of HIV RT enzyme. In the LAMP-mediated Product-Amplified RT activity assay (LamPART), the cDNA generation and LAMP amplification were combined into one pot with novel assay designs. When coupled with direct immunocapture of HIV RT enzyme for sample preparation and endpoint lateral flow assays for detection, LamPART detected as few as 20 copies of HIV RT enzyme spiked into 25μL plasma (fingerstick volume), equivalent to a single virion. In the Cas-mediated Product-Amplified RT activity assay (CasPART), we tailored the substrate design to achieve a LoD of 2e4 copies (1.67fM) of HIV RT enzyme. Furthermore, with its phenotypic characterization capability, CasPART was used to characterize the inhibition of HIV RT enzyme under antiretroviral drugs and differentiate between wild-type and mutant HIV RT enzyme for potential phenotypic drug resistance testing. Moreover, the CasPART assay can be readily adapted to target the activity of other pathogen-derived enzymes. As a proof-of-concept, we successfully adapted CasPART to detect HIV integrase with a sensitivity of 83nM. We anticipate the developed approach of detecting enzyme activity with product amplification has the potential for a wide range of pathogen detection and phenotypic characterization.
Collapse
Affiliation(s)
- Qin Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Enos C. Kline
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ian T. Hull
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ayokunle O. Olanrewaju
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Compain G, Monsarrat C, Blagojevic J, Brillet K, Dumas P, Hammann P, Kuhn L, Martiel I, Engilberge S, Oliéric V, Wolff P, Burnouf DY, Wagner J, Guichard G. Peptide-Based Covalent Inhibitors Bearing Mild Electrophiles to Target a Conserved His Residue of the Bacterial Sliding Clamp. JACS AU 2024; 4:432-440. [PMID: 38425897 PMCID: PMC10900491 DOI: 10.1021/jacsau.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.
Collapse
Affiliation(s)
- Guillaume Compain
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Clément Monsarrat
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Julie Blagojevic
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Karl Brillet
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Philippe Dumas
- Department
of Integrative Structural Biology, IGBMC, Strasbourg University, ESBS, 1 Rue Laurent Fries, 67404 Illkirch, Cedex, France
| | - Philippe Hammann
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Isabelle Martiel
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Sylvain Engilberge
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Vincent Oliéric
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Philippe Wolff
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Dominique Y. Burnouf
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Jérôme Wagner
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Gilles Guichard
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| |
Collapse
|
4
|
Nelson-Rigg R, Fagan SP, Jaremko WJ, Pata JD. Pre-Steady-State Kinetic Characterization of an Antibiotic-Resistant Mutant of Staphylococcus aureus DNA Polymerase PolC. Antimicrob Agents Chemother 2023; 67:e0157122. [PMID: 37222615 PMCID: PMC10269047 DOI: 10.1128/aac.01571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
The emergence and spread of antibiotic resistance in bacterial pathogens are serious and ongoing threats to public health. Since chromosome replication is essential to cell growth and pathogenesis, the essential DNA polymerases in bacteria have long been targets of antimicrobial development, although none have yet advanced to the market. Here, we use transient-state kinetic methods to characterize the inhibition of the PolC replicative DNA polymerase from Staphylococcus aureus by 2-methoxyethyl-6-(3'-ethyl-4'-methylanilino)uracil (ME-EMAU), a member of the 6-anilinouracil compounds that specifically target PolC enzymes, which are found in low-GC content Gram-positive bacteria. We find that ME-EMAU binds to S. aureus PolC with a dissociation constant of 14 nM, more than 200-fold tighter than the previously reported inhibition constant, which was determined using steady-state kinetic methods. This tight binding is driven by a very slow off rate of 0.006 s-1. We also characterized the kinetics of nucleotide incorporation by PolC containing a mutation of phenylalanine 1261 to leucine (F1261L). The F1261L mutation decreases ME-EMAU binding affinity by at least 3,500-fold but also decreases the maximal rate of nucleotide incorporation by 11.5-fold. This suggests that bacteria acquiring this mutation would be likely to replicate slowly and be unable to out-compete wild-type strains in the absence of inhibitors, reducing the likelihood of the resistant bacteria propagating and spreading resistance.
Collapse
Affiliation(s)
- Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Sean P. Fagan
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William J. Jaremko
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
5
|
Radford HM, Toft CJ, Sorenson AE, Schaeffer PM. Inhibition of Replication Fork Formation and Progression: Targeting the Replication Initiation and Primosomal Proteins. Int J Mol Sci 2023; 24:ijms24108802. [PMID: 37240152 DOI: 10.3390/ijms24108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication is still a largely underexplored target. This review summarises critical literature and synthesises our current understanding of DNA replication initiation in bacteria with a particular focus on the utility and applicability of essential initiation proteins as emerging drug targets. A critical evaluation of the specific methods available to examine and screen the most promising replication initiation proteins is provided.
Collapse
Affiliation(s)
- Holly M Radford
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| |
Collapse
|
6
|
Botto M, Murthy S, Lamers MH. High-Throughput Exonuclease Assay Based on the Fluorescent Base Analogue 2-Aminopurine. ACS OMEGA 2023; 8:8285-8292. [PMID: 36910963 PMCID: PMC9996622 DOI: 10.1021/acsomega.2c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Exonucleases are essential enzymes that remove nucleotides from free DNA ends during DNA replication, DNA repair, and telomere maintenance. Due to their essential role, they are potential targets for novel anticancer and antimicrobial drugs but have so far been little exploited. Here, we present a simple and versatile real-time exonuclease assay based on 2-aminopurine, an intrinsically fluorescent nucleotide that is quenched by neighboring bases when embedded in DNA. We show that our assay is applicable to different eukaryotic and bacterial exonucleases acting on both 3' and 5' DNA ends over a wide range of protein activities and suitable for a high-throughput inhibitor screening campaign. Using our assay, we discover a novel inhibitor of the Mycobacterium tuberculosis PHP-exonuclease that is part of the replicative DNA polymerase DnaE1. Hence, our novel assay will be a useful tool for high-throughput screening for novel exonuclease inhibitors that may interfere with DNA replication or DNA maintenance.
Collapse
|
7
|
Xue Y, Zhang L, Liu F, Dai F, Kong L, Ma D, Han Y. Alkaline "Nanoswords" Coordinate Ferroptosis-like Bacterial Death for Antibiosis and Osseointegration. ACS NANO 2023; 17:2711-2724. [PMID: 36662033 DOI: 10.1021/acsnano.2c10960] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferroptosis is an iron-dependent cell death and is associated with cancer therapy. Can it play a role in resistance of postoperative infection of implants, especially with an extracellular supplement of Fe ions in a non-cytotoxic dose? To answer this, "nanoswords" of Fe-doped titanite are fabricated on a Ti implant surface to resist bacterial invasion by a synergistic action of ferroptosis-like bacteria killing, proton disturbance, and physical puncture. The related antibiosis mechanism is explored by atomic force microscopy and genome sequencing. The nanoswords induce an increased local pH value, which not only weakens the proton motive force, reducing adenosine triphosphate synthesis of Staphylococcus aureus, but also decreases the membrane modulus, making the nanoswords distort and even puncture a bacterial membrane easily. Simultaneously, more Fe ions are taken by bacteria due to increased bacterial membrane permeability, resulting in ferroptosis-like death of bacteria, and this is demonstrated by intracellular iron enrichment, lipid peroxidation, and glutathione depletion. Interestingly, a microenvironment constructed by these nanoswords improves osteoblast behavior in vitro and bone regeneration in vivo. Overall, the nanoswords can induce ferroptosis-like bacterial death without cytotoxicity and have great promise in applications with clinical implants for outstanding antibiosis and biointegration performance.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an 710038, China
| | - Fang Dai
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an 710038, China
| | - Dayan Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
9
|
Pang AH, Tsodikov OV. A Colorimetric Assay to Identify and Characterize Bacterial Primase Inhibitors. Methods Mol Biol 2023; 2601:283-301. [PMID: 36445590 DOI: 10.1007/978-1-0716-2855-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial DNA primase DnaG is an attractive target for antibiotic discovery since it plays an essential role in DNA replication. Over the last 10 years, we have developed and optimized a robust colorimetric assay that enabled us to identify and validate inhibitors of bacterial primases. Here, we provide a detailed protocol for this colorimetric assay for DnaG from three different pathogenic bacteria (Mycobacterium tuberculosis, Bacillus anthracis, and Staphylococcus aureus), which can be performed in high throughput. We also describe secondary assays to characterize hits from this high-throughput screening assay. These assays are designed to identify inhibitors of the coupled enzyme inorganic pyrophosphatase, DNA binding agents, and elucidate the mode of inhibition of primase inhibitors.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Essential Paralogous Proteins as Potential Antibiotic Multitargets in Escherichia coli. Microbiol Spectr 2022; 10:e0204322. [PMID: 36445138 PMCID: PMC9769728 DOI: 10.1128/spectrum.02043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance threatens our current standards of care for the treatment and prevention of infectious disease. Antibiotics that have multiple targets have a lower propensity for the development of antibiotic resistance than those that have single targets and therefore represent an important tool in the fight against antimicrobial resistance. In this work, groups of essential paralogous proteins were identified in the important Gram-negative pathogen Escherichia coli that could represent novel targets for multitargeting antibiotics. These groups include targets from a broad range of essential macromolecular and biosynthetic pathways, including cell wall synthesis, membrane biogenesis, transcription, translation, DNA replication, fatty acid biosynthesis, and riboflavin and isoprenoid biosynthesis. Importantly, three groups of clinically validated antibiotic multitargets were identified using this method: the two subunits of the essential topoisomerases, DNA gyrase and topoisomerase IV, and one pair of penicillin-binding proteins. An additional eighteen protein groups represent potentially novel multitargets that could be explored in drug discovery efforts aimed at developing compounds having multiple targets in E. coli and other bacterial pathogens. IMPORTANCE Many types of bacteria have gained resistance to existing antibiotics used in medicine today. Therefore, new antibiotics with novel mechanisms must continue to be developed. One tool to prevent the development of antibiotic resistance is for a single drug to target multiple processes in a bacterium so that more than one change must arise for resistance to develop. The work described here provides a comprehensive search for proteins in the bacterium Escherichia coli that could be targets for such multitargeting antibiotics. Several groups of proteins that are already targets of clinically used antibiotics were identified, indicating that this approach can uncover clinically relevant antibiotic targets. In addition, eighteen currently unexploited groups of proteins were identified, representing new multitargets that could be explored in antibiotic research and development.
Collapse
|
11
|
Winterhalter C, Stevens D, Fenyk S, Pelliciari S, Marchand E, Soultanas P, Ilangovan A, Murray H. SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during Bacillus subtilis sporulation. Nucleic Acids Res 2022; 51:4302-4321. [PMID: 36416272 DOI: 10.1093/nar/gkac1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Research Unit in Biology of Microorganisms, Department of Biology, Université de Namur, Namur, Belgium
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aravindan Ilangovan
- Blizard Institute, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark street, London E1 2AT, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
12
|
Mueller SH, Fitschen LJ, Shirbini A, Hamdan SM, Spenkelink L, van Oijen A. Rapid single-molecule characterisation of enzymes involved in nucleic-acid metabolism. Nucleic Acids Res 2022; 51:e5. [PMID: 36321650 PMCID: PMC9841422 DOI: 10.1093/nar/gkac949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Lucy J Fitschen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Afnan Shirbini
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Samir M Hamdan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lisanne M Spenkelink
- Correspondence may also be addressed to Lisanne M. Spenkelink. Tel: +61 2 4239 2371;
| | | |
Collapse
|
13
|
Periago J, Mason C, Griep MA. Theoretical Development of DnaG Primase as a Novel Narrow-Spectrum Antibiotic Target. ACS OMEGA 2022; 7:8420-8428. [PMID: 35309427 PMCID: PMC8928506 DOI: 10.1021/acsomega.1c05928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The widespread use of antibiotics to treat infections is one of the reasons that global mortality rates have fallen over the past 80 years. However, antibiotic use is also responsible for the concomitant rise in antibiotic resistance because it results in dysbiosis in which commensal and pathogenic bacteria are both greatly reduced. Therefore, narrow-range antibiotics are a promising direction for reducing antibiotic resistance because they are more discriminate. As a step toward addressing this problem, the goal of this study was to identify sites on DnaG primase that are conserved within Gram-positive bacteria and different from the equivalent sites in Gram-negative bacteria. Based on sequence and structural analysis, the primase C-terminal helicase-binding domain (CTD) was identified as most promising. Although the primase CTD sequences are very poorly conserved, they have highly conserved protein folds, and Gram-positive bacterial primases fold into a compact state that creates a small molecule binding site adjacent to a groove. The small molecule would stabilize the protein in its compact state, which would interfere with the helicase binding. This is important because primase CTD must be in its open conformation to bind to its cognate helicase at the replication fork.
Collapse
|
14
|
Spinnato MC, Lo Sciuto A, Mercolino J, Lucidi M, Leoni L, Rampioni G, Visca P, Imperi F. Effect of a Defective Clamp Loader Complex of DNA Polymerase III on Growth and SOS Response in Pseudomonas aeruginosa. Microorganisms 2022; 10:423. [PMID: 35208877 PMCID: PMC8879598 DOI: 10.3390/microorganisms10020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase III (Pol III) is the replicative enzyme in bacteria. It consists of three subcomplexes, the catalytic core, the β clamp, and the clamp loader. While this complex has been thoroughly characterized in the model organism Escherichia coli, much less is known about its functioning and/or its specific properties in other bacteria. Biochemical studies highlighted specific features in the clamp loader subunit ψ of Pseudomonas aeruginosa as compared to its E. coli counterpart, and transposon mutagenesis projects identified the ψ-encoding gene holD among the strictly essential core genes of P. aeruginosa. By generating a P. aeruginosa holD conditional mutant, here we demonstrate that, as previously observed for E. coli holD mutants, HolD-depleted P. aeruginosa cells show strongly decreased growth, induction of the SOS response, and emergence of suppressor mutants at high frequency. However, differently from what was observed in E. coli, the growth of P. aeruginosa cells lacking HolD cannot be rescued by the deletion of genes for specialized DNA polymerases. We also observed that the residual growth of HolD-depleted cells is strictly dependent on homologous recombination functions, suggesting that recombination-mediated rescue of stalled replication forks is crucial to support replication by a ψ-deficient Pol III enzyme in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Concetta Spinnato
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Alessandra Lo Sciuto
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Jessica Mercolino
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Livia Leoni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
15
|
Lata K, Vishwakarma J, Kumar S, Khanam T, Ramachandran R. Mycobacterium tuberculosis Endonuclease VIII 2 (Nei2) forms a prereplicative BER complex with DnaN: Identification, characterization, and disruption of complex formation. Mol Microbiol 2021; 117:320-333. [PMID: 34820919 DOI: 10.1111/mmi.14848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis Nei2 (Rv3297) is a BER glycosylase that removes oxidized base lesions from ssDNA and replication fork-mimicking substrates. We show that Endonuclease VIII 2 (Nei2) forms a BER complex with the β-clamp (DnaN, Rv0002) with a KD of 170 nM. The Nei2-β-clamp interactions enhance Nei2's activities up to several folds. SEC analysis shows that one molecule of Nei2 binds to a single β-clamp dimer. Nei2 interacts with subsites I and II of the β-clamp via a noncanonical 223 QGCRRCGTLIAY239 Clamp Interacting Protein (CIP) motif in the C-terminal zinc-finger domain, which was previously shown by us to be dispensable for intrinsic Nei2 activity. The 12-mer peptide alone exhibited a KD of 10.28 nM, suggesting that the motif is a key mediator of Nei2-β-clamp interactions. Finally, we identified inhibitors of Nei2-β-clamp interactions using rational methods, in vitro disruption, and SPR assays after querying a database of natural products. We found that Tubulosine, Fumitremorgin C, Toyocamycin, and Aleuritic acid exhibit IC50 values of 94.47, 83.49, 109.7, and 71.49 µM, respectively. They act by disrupting Nei2-β-clamp interactions and do not affect intrinsic Nei2 activity. Among other things, the present study gives insights into the role of Nei2 in bacterial prereplicative BER.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyoti Vishwakarma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
17
|
High-Throughput Screening to Identify Inhibitors of SSB-Protein Interactions. Methods Mol Biol 2021. [PMID: 33847955 DOI: 10.1007/978-1-0716-1290-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The bacterial single-stranded DNA-binding protein (SSB) uses an acidic C-terminal tail to interact with over a dozen proteins, acting as a genome maintenance hub. These SSB-protein interactions are essential, as mutations to the C-terminal tail that disrupt these interactions are lethal in Escherichia coli. While the roles of individual SSB-protein interactions have been dissected with mutational studies, small-molecule inhibitors of these interactions could serve as valuable research tools and have potential as novel antimicrobial agents. This chapter describes a high-throughput screening campaign used to identify inhibitors of SSB-protein interactions. A screen targeting the PriA-SSB interface from Klebsiella pneumoniae is presented as an example, but the methods may be adapted to target nearly any SSB interaction.
Collapse
|
18
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
19
|
Biology on track: single-molecule visualisation of protein dynamics on linear DNA substrates. Essays Biochem 2021; 65:5-16. [PMID: 33236762 DOI: 10.1042/ebc20200019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Single-molecule fluorescence imaging techniques have become important tools in biological research to gain mechanistic insights into cellular processes. These tools provide unique access to the dynamic and stochastic behaviour of biomolecules. Single-molecule tools are ideally suited to study protein-DNA interactions in reactions reconstituted from purified proteins. The use of linear DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behaviour of DNA-translocating proteins over long distances. Single-molecule studies using long linear DNA substrates have revealed unanticipated insights on the dynamics of multi-protein systems. In this review, we provide an overview of recent methodological advances, including the construction of linear DNA substrates. We highlight the versatility of these substrates by describing their application in different single-molecule fluorescence techniques, with a focus on in vitro reconstituted systems. We discuss insights from key experiments on DNA curtains, DNA-based molecular motor proteins, and multi-protein systems acting on DNA that relied on the use of long linear substrates and single-molecule visualisation. The quality and customisability of linear DNA substrates now allows the insertion of modifications, such as nucleosomes, to create conditions mimicking physiologically relevant crowding and complexity. Furthermore, the current technologies will allow future studies on the real-time visualisation of the interfaces between DNA maintenance processes such as replication and transcription.
Collapse
|
20
|
Green KD, Punetha A, Chandrika NT, Hou C, Garneau-Tsodikova S, Tsodikov OV. Development of Single-Stranded DNA Bisintercalating Inhibitors of Primase DnaG as Antibiotics. ChemMedChem 2021; 16:1986-1995. [PMID: 33711198 DOI: 10.1002/cmdc.202100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Many essential enzymes in bacteria remain promising potential targets of antibacterial agents. In this study, we discovered that dequalinium, a topical antibacterial agent, is an inhibitor of Staphylococcus aureus primase DnaG (SaDnaG) with low-micromolar minimum inhibitory concentrations against several S. aureus strains, including methicillin-resistant bacteria. Mechanistic studies of dequalinium and a series of nine of its synthesized analogues revealed that these compounds are single-stranded DNA bisintercalators that penetrate a bacterium by compromising its membrane. The best compound of this series likely interacts with DnaG directly, inhibits both staphylococcal cell growth and biofilm formation, and displays no significant hemolytic activity or toxicity to mammalian cells. This compound is an excellent lead for further development of a novel anti-staphylococcal therapeutic.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | | | - Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | | | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
21
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
22
|
Nedal A, Ræder SB, Dalhus B, Helgesen E, Forstrøm RJ, Lindland K, Sumabe BK, Martinsen JH, Kragelund BB, Skarstad K, Bjørås M, Otterlei M. Peptides containing the PCNA interacting motif APIM bind to the β-clamp and inhibit bacterial growth and mutagenesis. Nucleic Acids Res 2020; 48:5540-5554. [PMID: 32347931 PMCID: PMC7261172 DOI: 10.1093/nar/gkaa278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
In the fight against antimicrobial resistance, the bacterial DNA sliding clamp, β-clamp, is a promising drug target for inhibition of DNA replication and translesion synthesis. The β-clamp and its eukaryotic homolog, PCNA, share a C-terminal hydrophobic pocket where all the DNA polymerases bind. Here we report that cell penetrating peptides containing the PCNA-interacting motif APIM (APIM-peptides) inhibit bacterial growth at low concentrations in vitro, and in vivo in a bacterial skin infection model in mice. Surface plasmon resonance analysis and computer modeling suggest that APIM bind to the hydrophobic pocket on the β-clamp, and accordingly, we find that APIM-peptides inhibit bacterial DNA replication. Interestingly, at sub-lethal concentrations, APIM-peptides have anti-mutagenic activities, and this activity is increased after SOS induction. Our results show that although the sequence homology between the β-clamp and PCNA are modest, the presence of similar polymerase binding pockets in the DNA clamps allows for binding of the eukaryotic binding motif APIM to the bacterial β-clamp. Importantly, because APIM-peptides display both anti-mutagenic and growth inhibitory properties, they may have clinical potential both in combination with other antibiotics and as single agents.
Collapse
Affiliation(s)
- Aina Nedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway
| | - Synnøve B Ræder
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital, and University of Oslo, 0424, Oslo, Norway
| | - Emily Helgesen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital, and University of Oslo, 0424, Oslo, Norway
| | - Rune J Forstrøm
- Department of Microbiology, Oslo University Hospital, and University of Oslo, 0424, Oslo, Norway
| | - Kim Lindland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway
| | - Balagra K Sumabe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway
| | - Jacob H Martinsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Kirsten Skarstad
- Department of Microbiology, Oslo University Hospital, and University of Oslo, 0424, Oslo, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital, and University of Oslo, 0424, Oslo, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, 7489 Trondheim, Norway
| |
Collapse
|
23
|
Miggiano R, Morrone C, Rossi F, Rizzi M. Targeting Genome Integrity in Mycobacterium Tuberculosis: From Nucleotide Synthesis to DNA Replication and Repair. Molecules 2020; 25:E1205. [PMID: 32156001 PMCID: PMC7179400 DOI: 10.3390/molecules25051205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.
Collapse
Affiliation(s)
- Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| | | | | | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| |
Collapse
|
24
|
Protein-protein complexes as targets for drug discovery against infectious diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:237-251. [PMID: 32312423 DOI: 10.1016/bs.apcsb.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibiotics are therapeutic agents against bacterial infections, however, the emergence of multiple and extremely drug-resistant microbes (Multi-Drug Resistant and Extremely Drug-Resistant) are compromising the effectiveness of the currently available treatment options. The drug resistance is not a novel crisis, the current pace of drug discovery has failed to compete with the growth of MDR and XDR pathogenic strains and therefore, it is highly central to find out novel antimicrobial drugs with unique mechanisms of action which may reduce the burden of MDR and XDR pathogenic strains. Protein-protein interactions (PPIs) are involved in a countless of the physiological and cellular phenomena and have become an attractive target to treat the diseases. Therefore, targeting PPIs in infectious agents may offer a completely novel strategy of intervention to develop anti-infective drugs that may combat the ever-increasing rate of drug resistant strains. This chapter describes how small molecule candidate inhibitors that are capable of disrupting the PPIs in pathogenic microbes and it could be an alternative lead discovery strategy to obtain novel antibiotics. Over the last three decades, there has been increasing efforts focused on the manipulation of PPIs in order to develop novel therapeutic interventions. The diversity and complexity of such a complex and highly dynamic systems pose many challenges in targeting PPIs by drug-like molecules with necessary selectivity and potency. Traditional and novel drug discovery strategies have provided tools for designing and assessing PPI inhibitors against infectious diseases.
Collapse
|
25
|
Genilloud O. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 2019; 51:81-87. [PMID: 31739283 DOI: 10.1016/j.mib.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
Microbial natural products have been one of the most important sources for the discovery of potential new antibiotics. However, the decline in the number of new chemical scaffolds discovered and the rediscovery problem of old known molecules has become a limitation for discovery programs developed by an industry confronted by a lack of incentives and a broken economic model. In contrast, the emergence of multidrug resistance in key pathogens has continued to progress and this issue is compounded by a lack of new antibiotics in development to address most of the difficult to treat infections. Advances in genome mining have confirmed the richness of biosynthetic gene clusters (BGCs) in the majority of microbial sources, and this suggests that an untapped chemical diversity is waiting to be discovered. The development of new genome engineering and synthetic biology tools, and the implementation of comparative omic approaches is fostering the development of new integrated culture-based strategies and genomic-driven approaches aimed at delivering new chemical classes of antibiotics.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
26
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
27
|
Bojer MS, Wacnik K, Kjelgaard P, Gallay C, Bottomley AL, Cohn MT, Lindahl G, Frees D, Veening JW, Foster SJ, Ingmer H. SosA inhibits cell division in Staphylococcus aureus in response to DNA damage. Mol Microbiol 2019; 112:1116-1130. [PMID: 31290194 PMCID: PMC6851548 DOI: 10.1111/mmi.14350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of cell division is critical for viability under DNA‐damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS‐induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C‐terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild‐type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C‐terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.
Collapse
Affiliation(s)
- Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Katarzyna Wacnik
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Peter Kjelgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amy L Bottomley
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Marianne T Cohn
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Lindahl
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, UK
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Blocking the Trigger: Inhibition of the Initiation of Bacterial Chromosome Replication as an Antimicrobial Strategy. Antibiotics (Basel) 2019; 8:antibiotics8030111. [PMID: 31390740 PMCID: PMC6784150 DOI: 10.3390/antibiotics8030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
All bacterial cells must duplicate their genomes prior to dividing into two identical daughter cells. Chromosome replication is triggered when a nucleoprotein complex, termed the orisome, assembles, unwinds the duplex DNA, and recruits the proteins required to establish new replication forks. Obviously, the initiation of chromosome replication is essential to bacterial reproduction, but this process is not inhibited by any of the currently-used antimicrobial agents. Given the urgent need for new antibiotics to combat drug-resistant bacteria, it is logical to evaluate whether or not unexploited bacterial processes, such as orisome assembly, should be more closely examined for sources of novel drug targets. This review will summarize current knowledge about the proteins required for bacterial chromosome initiation, as well as how orisomes assemble and are regulated. Based upon this information, we discuss current efforts and potential strategies and challenges for inhibiting this initiation pharmacologically.
Collapse
|
29
|
Reyes-Lamothe R, Sherratt DJ. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 2019; 17:467-478. [DOI: 10.1038/s41579-019-0212-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Acar N, Cogan NG. Enhanced disinfection of bacterial populations by nutrient and antibiotic challenge timing. Math Biosci 2019; 313:12-32. [PMID: 31047899 DOI: 10.1016/j.mbs.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Several difficult to treat illnesses like tuberculosis, chronic pneumonia, and inner ear infections are caused by tolerant bacteria enmeshed in a biofilm. Bacterial tolerance can be genotypic (resistance-i.e. MRSA), phenotypic (non-heritable) or environmental (e.g. nutrient gradients). Persister formation is a phenotypic expression and this phenotype is highly tolerant of disinfection. Constant dosing is typically ineffective and to generate an effective treatment protocol, we need to understand the dynamics of persister cells. In this study, we investigate how manipulating the application of antibiotics and addition of nutrients enhances the disinfection of a bacterial population in batch culture. Eliminating persister bacteria is considered as a challenge for the food industry or wastewater treatment, since the failure may result in food contamination and disease transmission. Previous studies focused on the antimicrobial agent as a control variable to eliminate the bacterial population. In addition to antibiotic, we consider the significance of the nutrient in eradicating the susceptible and persister cells since the disinfection of susceptible population depends on the nutrient intake. We present a mathematical model that captures the dynamics between susceptible and persister bacteria with antibiotic and nutrient control variables. We investigate the optimal dose-withdrawal of antibiotic timing in several cases including constant nutrient in time, dynamic nutrient in time and piecewise constant nutrient in time.
Collapse
Affiliation(s)
- Nihan Acar
- Department of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee, FL 32306, USA.
| | - Nick G Cogan
- Department of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
31
|
Oakley AJ. A structural view of bacterial DNA replication. Protein Sci 2019; 28:990-1004. [PMID: 30945375 DOI: 10.1002/pro.3615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/11/2022]
Abstract
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.
Collapse
Affiliation(s)
- Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
32
|
Frohlich KM, Weintraub SF, Bell JT, Todd GC, Väre VYP, Schneider R, Kloos ZA, Tabe ES, Cantara WA, Stark CJ, Onwuanaibe UJ, Duffy BC, Basanta-Sanchez M, Kitchen DB, McDonough KA, Agris PF. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019; 14:758-769. [PMID: 30707489 DOI: 10.1002/cmdc.201800744] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 μg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 μg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 μm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.
Collapse
Affiliation(s)
- Kyla M Frohlich
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Regeneron Inc., Rensselaer, NY, USA
| | - Spencer F Weintraub
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: New York Medical College, Valhalla, NY, USA
| | - Janeen T Bell
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
| | - Gabrielle C Todd
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ville Y P Väre
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ryan Schneider
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA
| | - Zachary A Kloos
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
| | - Ebot S Tabe
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - William A Cantara
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Caren J Stark
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Urenna J Onwuanaibe
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bryan C Duffy
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA.,Current address: New York State Department of Health, Albany, NY, USA
| | - Maria Basanta-Sanchez
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Waters Corporation, Pleasanton, CA, USA
| | - Douglas B Kitchen
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA
| | - Paul F Agris
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Duke University, Medical School, Durham, NC, USA
| |
Collapse
|
33
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|
34
|
McGrath AE, Martyn AP, Whittell LR, Dawes FE, Beck JL, Dixon NE, Kelso MJ, Oakley AJ. Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens. J Struct Biol 2018; 204:396-405. [DOI: 10.1016/j.jsb.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
|
35
|
Carro L. Protein-protein interactions in bacteria: a promising and challenging avenue towards the discovery of new antibiotics. Beilstein J Org Chem 2018; 14:2881-2896. [PMID: 30546472 PMCID: PMC6278769 DOI: 10.3762/bjoc.14.267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein-protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.
Collapse
Affiliation(s)
- Laura Carro
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
36
|
Ilic S, Cohen S, Singh M, Tam B, Dayan A, Akabayov B. DnaG Primase-A Target for the Development of Novel Antibacterial Agents. Antibiotics (Basel) 2018; 7:E72. [PMID: 30104489 PMCID: PMC6163395 DOI: 10.3390/antibiotics7030072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial primase-an essential component in the replisome-is a promising but underexploited target for novel antibiotic drugs. Bacterial primases have a markedly different structure than the human primase. Inhibition of primase activity is expected to selectively halt bacterial DNA replication. Evidence is growing that halting DNA replication has a bacteriocidal effect. Therefore, inhibitors of DNA primase could provide antibiotic agents. Compounds that inhibit bacterial DnaG primase have been developed using different approaches. In this paper, we provide an overview of the current literature on DNA primases as novel drug targets and the methods used to find their inhibitors. Although few inhibitors have been identified, there are still challenges to develop inhibitors that can efficiently halt DNA replication and may be applied in a clinical setting.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Meenakshi Singh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Adi Dayan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
37
|
Durdagi S, Tahir Ul Qamar M, Salmas RE, Tariq Q, Anwar F, Ashfaq UA. Investigating the molecular mechanism of staphylococcal DNA gyrase inhibitors: A combined ligand-based and structure-based resources pipeline. J Mol Graph Model 2018; 85:122-129. [PMID: 30176384 DOI: 10.1016/j.jmgm.2018.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
Appropriate therapeutic solutions against Staphylococcal infections are currently limited. To work out the complex task of challenging drug resistance in Staphylococcus aureus, new compounds with novel modes of action are required. In this study, we performed target-driven virtual screening to filter exhaustive phytochemical libraries that can inhibit the activity of S. aureus DNA Gyrase B (Gyr B). Three top-ranked hit molecules (Mangostenone E, Candenatenin A and 2,4,4'-trihydroxydihydrochalcone) were identified from comprehensive molecular docking studies based on their strong spatial affinity with key catalytic residues of the binding pocket of DNA GyrB, especially with the well-known crucial residue Asp81. Molecular dynamics (MD) simulations were performed for these identified hit molecules for better understanding of their dynamical and structural profiles throughout the MD simulations. These compounds can be explored as future lead optimization molecules to discover a new class of antibiotics against resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | | | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Quratulain Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan.
| |
Collapse
|
38
|
Protein‐protein interactions as antibiotic targets: A medicinal chemistry perspective. Med Res Rev 2018; 40:469-494. [DOI: 10.1002/med.21519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 12/27/2022]
|
39
|
DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1019:247-262. [PMID: 29116639 DOI: 10.1007/978-3-319-64371-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.
Collapse
|
40
|
Hou C, Biswas T, Tsodikov OV. Structures of the Catalytic Domain of Bacterial Primase DnaG in Complexes with DNA Provide Insight into Key Priming Events. Biochemistry 2018; 57:2084-2093. [PMID: 29558114 DOI: 10.1021/acs.biochem.8b00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial primase DnaG is an essential nucleic acid polymerase that generates primers for replication of chromosomal DNA. The mechanism of DnaG remains unclear due to the paucity of structural information on DnaG in complexes with other replisome components. Here we report the first crystal structures of noncovalent DnaG-DNA complexes, obtained with the RNA polymerase domain of Mycobacterium tuberculosis DnaG and various DNA ligands. One structure, obtained with ds DNA, reveals interactions with DnaG as it slides on ds DNA and suggests how DnaG binds template for primer synthesis. In another structure, DNA in the active site of DnaG mimics the primer, providing insight into mechanisms for the nucleotide transfer and DNA translocation. In conjunction with the recent cryo-EM structure of the bacteriophage T7 replisome, this study yields a model for primer elongation and hand-off to DNA polymerase.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Tapan Biswas
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| |
Collapse
|
41
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
42
|
Chilingaryan Z, Headey SJ, Lo ATY, Xu ZQ, Otting G, Dixon NE, Scanlon MJ, Oakley AJ. Fragment-Based Discovery of Inhibitors of the Bacterial DnaG-SSB Interaction. Antibiotics (Basel) 2018; 7:E14. [PMID: 29470422 PMCID: PMC5872125 DOI: 10.3390/antibiotics7010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
In bacteria, the DnaG primase is responsible for synthesis of short RNA primers used to initiate chain extension by replicative DNA polymerase(s) during chromosomal replication. Among the proteins with which Escherichia coli DnaG interacts is the single-stranded DNA-binding protein, SSB. The C-terminal hexapeptide motif of SSB (DDDIPF; SSB-Ct) is highly conserved and is known to engage in essential interactions with many proteins in nucleic acid metabolism, including primase. Here, fragment-based screening by saturation-transfer difference nuclear magnetic resonance (STD-NMR) and surface plasmon resonance assays identified inhibitors of the primase/SSB-Ct interaction. Hits were shown to bind to the SSB-Ct-binding site using 15N-¹H HSQC spectra. STD-NMR was used to demonstrate binding of one hit to other SSB-Ct binding partners, confirming the possibility of simultaneous inhibition of multiple protein/SSB interactions. The fragment molecules represent promising scaffolds on which to build to discover new antibacterial compounds.
Collapse
Affiliation(s)
- Zorik Chilingaryan
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Stephen J Headey
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
43
|
van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother 2018; 72:1275-1284. [PMID: 28073967 PMCID: PMC5400081 DOI: 10.1093/jac/dkw548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the impending crisis of antimicrobial resistance, there is an urgent need to develop novel antimicrobials to combat difficult infections and MDR pathogenic microorganisms. DNA replication is essential for cell viability and is therefore an attractive target for antimicrobials. Although several antimicrobials targeting DNA replication proteins have been developed to date, gyrase/topoisomerase inhibitors are the only class widely used in the clinic. Given the numerous essential proteins in the bacterial replisome that may serve as a potential target for inhibitors and the relative paucity of suitable compounds, it is evident that antimicrobials targeting the replisome are underdeveloped so far. In this review, we report on the diversity of antimicrobial compounds targeting DNA replication and highlight some of the challenges in developing new drugs that target this process.
Collapse
|
44
|
Voter AF, Killoran MP, Ananiev GE, Wildman SA, Hoffmann FM, Keck JL. A High-Throughput Screening Strategy to Identify Inhibitors of SSB Protein-Protein Interactions in an Academic Screening Facility. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:94-101. [PMID: 28570838 PMCID: PMC5667550 DOI: 10.1177/2472555217712001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic-resistant bacterial infections are increasingly prevalent worldwide, and there is an urgent need for novel classes of antibiotics capable of overcoming existing resistance mechanisms. One potential antibiotic target is the bacterial single-stranded DNA binding protein (SSB), which serves as a hub for DNA repair, recombination, and replication. Eight highly conserved residues at the C-terminus of SSB use direct protein-protein interactions (PPIs) to recruit more than a dozen important genome maintenance proteins to single-stranded DNA. Mutations that disrupt PPIs with the C-terminal tail of SSB are lethal, suggesting that small-molecule inhibitors of these critical SSB PPIs could be effective antibacterial agents. As a first step toward implementing this strategy, we have developed orthogonal high-throughput screening assays to identify small-molecule inhibitors of the Klebsiella pneumonia SSB-PriA interaction. Hits were identified from an initial screen of 72,474 compounds using an AlphaScreen (AS) primary screen, and their activity was subsequently confirmed in an orthogonal fluorescence polarization (FP) assay. As an additional control, an FP assay targeted against an unrelated eukaryotic PPI was used to confirm specificity for the SSB-PriA interaction. Nine potent and selective inhibitors produced concentration-response curves with IC50 values of <40 μM, and two compounds were observed to directly bind to PriA, demonstrating the success of this screen strategy.
Collapse
Affiliation(s)
- Andrew F. Voter
- Department of Biomolecular Chemistry, Room 1135 Biochemistry Building, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706. Tel: 608-263-1954. Fax: 608-262-5253.
| | - Michael P. Killoran
- Department of Biomolecular Chemistry, Room 1135 Biochemistry Building, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706. Tel: 608-263-1954. Fax: 608-262-5253.
- Department of Biomolecular Chemistry, Room 1135 Biochemistry Building, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706. Current contact: Promega Corporation, Madison, Wisconsin 53711, United States. Tel: 608-443-3116.
| | - Gene E. Ananiev
- UW Carbone Cancer Center Drug Discovery Core, Room 6003 Wisconsin Institutes for Medical Research, 1111 Highland Ave, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705. Tel 608-263-8687.
| | - Scott A. Wildman
- UW Carbone Cancer Center Drug Discovery Core, Room 6003 Wisconsin Institutes for Medical Research, 1111 Highland Ave, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705. Tel 608-263-8687.
| | - F. Michael Hoffmann
- McArdle Laboratory for Cancer Research and UW Carbone Cancer Center Drug Discovery Core, Room 7553, Wisconsin Institutes for Medical Research, 1111 Highland Ave, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705. Tel 608-263-8687.
| | - James L. Keck
- Department of Biomolecular Chemistry, Room 1135 Biochemistry Building, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706. Tel: 608-263-1815. Fax: 608-262-5253.
| |
Collapse
|
45
|
van Eijk E, Paschalis V, Green M, Friggen AH, Larson MA, Spriggs K, Briggs GS, Soultanas P, Smits WK. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile. Open Biol 2017; 6:rsob.160272. [PMID: 28003473 PMCID: PMC5204125 DOI: 10.1098/rsob.160272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
DNA replication is an essential and conserved process in all domains of life and may serve as a target for the development of new antimicrobials. However, such developments are hindered by subtle mechanistic differences and limited understanding of DNA replication in pathogenic microorganisms. Clostridium difficile is the main cause of healthcare-associated diarrhoea and its DNA replication machinery is virtually uncharacterized. We identify and characterize the mechanistic details of the putative replicative helicase (CD3657), helicase-loader ATPase (CD3654) and primase (CD1454) of C. difficile, and reconstitute helicase and primase activities in vitro. We demonstrate a direct and ATP-dependent interaction between the helicase loader and the helicase. Furthermore, we find that helicase activity is dependent on the presence of primase in vitro. The inherent trinucleotide specificity of primase is determined by a single lysine residue and is similar to the primase of the extreme thermophile Aquifex aeolicus. However, the presence of helicase allows more efficient de novo synthesis of RNA primers from non-preferred trinucleotides. Thus, loader–helicase–primase interactions, which crucially mediate helicase loading and activation during DNA replication in all organisms, differ critically in C. difficile from that of the well-studied Gram-positive Bacillus subtilis model.
Collapse
Affiliation(s)
- Erika van Eijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Matthew Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.,National Strategic Research Institute, Omaha, NE 68105, USA
| | | | - Geoffrey S Briggs
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Panos Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Paschalis V, Le Chatelier E, Green M, Nouri H, Képès F, Soultanas P, Janniere L. Interactions of the Bacillus subtilis DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biol 2017; 7:170146. [PMID: 28878042 PMCID: PMC5627055 DOI: 10.1098/rsob.170146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
During Bacillus subtilis replication two replicative polymerases function at the replisome to collectively carry out genome replication. In a reconstituted in vitro replication assay, PolC is the main polymerase while the lagging strand DnaE polymerase briefly extends RNA primers synthesized by the primase DnaG prior to handing-off DNA synthesis to PolC. Here, we show in vivo that (i) the polymerase activity of DnaE is essential for both the initiation and elongation stages of DNA replication, (ii) its error rate varies inversely with PolC concentration, and (iii) its misincorporations are corrected by the mismatch repair system post-replication. We also found that the error rates in cells encoding mutator forms of both PolC and DnaE are significantly higher (up to 15-fold) than in PolC mutants. In vitro, we showed that (i) the polymerase activity of DnaE is considerably stimulated by DnaN, SSB and PolC, (ii) its error-prone activity is strongly inhibited by DnaN, and (iii) its errors are proofread by the 3' > 5' exonuclease activity of PolC in a stable template-DnaE-PolC complex. Collectively our data show that protein-protein interactions within the replisome modulate the activity and fidelity of DnaE, and confirm the prominent role of DnaE during B. subtilis replication.
Collapse
Affiliation(s)
- Vasileios Paschalis
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Emmanuelle Le Chatelier
- Institut National de la Recherche Agronomique, Génétique Microbienne, 78350 Jouy-en-Josas, France
| | - Matthew Green
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Hamid Nouri
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - François Képès
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|
48
|
Abstract
Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication-in particular, its regulation and coordination with cell division-in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli-both of which might be relevant to the emergence and fixation of genetic drug resistance.
Collapse
|
49
|
Zawilak-Pawlik A, Nowaczyk M, Zakrzewska-Czerwińska J. The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex. Genes (Basel) 2017; 8:genes8050136. [PMID: 28489024 PMCID: PMC5448010 DOI: 10.3390/genes8050136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
The primary role of the bacterial protein DnaA is to initiate chromosomal replication. The DnaA protein binds to DNA at the origin of chromosomal replication (oriC) and assembles into a filament that unwinds double-stranded DNA. Through interaction with various other proteins, DnaA also controls the frequency and/or timing of chromosomal replication at the initiation step. Escherichia coli DnaA also recruits DnaB helicase, which is present in unwound single-stranded DNA and in turn recruits other protein machinery for replication. Additionally, DnaA regulates the expression of certain genes in E. coli and a few other species. Acting as a multifunctional factor, DnaA is composed of four domains that have distinct, mutually dependent roles. For example, C-terminal domain IV interacts with double-stranded DnaA boxes. Domain III drives ATP-dependent oligomerization, allowing the protein to form a filament that unwinds DNA and subsequently binds to and stabilizes single-stranded DNA in the initial replication bubble; this domain also interacts with multiple proteins that control oligomerization. Domain II constitutes a flexible linker between C-terminal domains III–IV and N-terminal domain I, which mediates intermolecular interactions between DnaA and binds to other proteins that affect DnaA activity and/or formation of the initiation complex. Of these four domains, the role of the N-terminus (domains I–II) in the assembly of the initiation complex is the least understood and appears to be the most species-dependent region of the protein. Thus, in this review, we focus on the function of the N-terminus of DnaA in orisome formation and the regulation of its activity in the initiation complex in different bacteria.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Małgorzata Nowaczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, Wrocław 50-383, Poland.
| |
Collapse
|
50
|
Abstract
Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|