1
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
2
|
Bocharov EV, Gremer L, Urban AS, Okhrimenko IS, Volynsky PE, Nadezhdin KD, Bocharova OV, Kornilov DA, Zagryadskaya YA, Kamynina AV, Kuzmichev PK, Kutzsche J, Bolakhrif N, Müller-Schiffmann A, Dencher NA, Arseniev AS, Efremov RG, Gordeliy VI, Willbold D. All -d -Enantiomeric Peptide D3 Designed for Alzheimer's Disease Treatment Dynamically Interacts with Membrane-Bound Amyloid-β Precursors. J Med Chem 2021; 64:16464-16479. [PMID: 34739758 DOI: 10.1021/acs.jmedchem.1c00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-β peptide (Aβ) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aβ aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aβ monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aβ sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aβ conversion into β-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Lothar Gremer
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Anatoly S Urban
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Pavel E Volynsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Kirill D Nadezhdin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Olga V Bocharova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Daniil A Kornilov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Anna V Kamynina
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Pavel K Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Janine Kutzsche
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Najoua Bolakhrif
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Physical Biochemistry, Chemistry department, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alexander S Arseniev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Roman G Efremov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.,School of Applied Mathematics, Higher School of Economics, 109028 Moscow, Russia
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,IRIG, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Dieter Willbold
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, Chai YH, Gunasekaran B, Salvamani S. The Potential Benefits of Nanotechnology in Treating Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5550938. [PMID: 34285915 PMCID: PMC8275379 DOI: 10.1155/2021/5550938] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer's disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer's disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer's disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer's disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer's disease as well as its challenges.
Collapse
Affiliation(s)
- Tan Sook Ling
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shanthini Chandrasegaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Low Zhi Xuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Tong Li Suan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Elaine Elaine
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Durrgashini Visva Nathan
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yam Hok Chai
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Jani V, Sonavane U, Joshi R. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. RSC Adv 2021; 11:23557-23573. [PMID: 35479797 PMCID: PMC9036544 DOI: 10.1039/d1ra03609b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-β aggregation. Currently, all the approved medications are to treat the symptoms but there is no clinically approved treatment for the cure or to prevent the progression of Alzheimer's disease (AD). Earlier reports suggest the use of small molecules and peptides to target and destabilize the amyloid fibril. The use of Beta Sheet Breaker (BSB) peptides seems to be a promising and attractive therapeutic approach as it can strongly bind and destabilize the preformed amyloid fibril. There are experimental studies describing the destabilization role of various BSB peptides, but the exact mechanism remains elusive. In the current work, an attempt is made to study the destabilization mechanism of different BSB peptides on preformed amyloid protofibril using molecular docking and simulations. Molecular docking of eight different BSB peptides of varying length (5-mer to 10-mer) on the Abeta protofibril was done. Docking was followed by multiple sets of molecular simulations for the Abeta protofibril–BSB peptide complex for each of the top ranked poses of the eight BSB peptides. As a control, multiple sets of simulations for the Abeta protofibril (APO) were also carried out. An increase in the RMSD, decrease in the number of interchain hydrogen bonds, destabilization of important salt bridge interactions (D23–K28), and destabilization of interchain hydrophobic interactions suggested the destabilization of Abeta protofibril by BSB peptides. The MM-GBSA free energy of binding for each of the BSB peptides was calculated to measure the binding affinity of BSB peptides to Abeta protofibril. Further residue wise contribution of free energy of binding was also calculated. The study showed that 7-mer peptides tend to bind strongly to Abeta protofibril as compared to other BSB peptides. The KKLVFFA peptide showed better destabilization potential as compared to the other BSB peptides. The details about the destabilization mechanism of BSB peptides will help in the design of other peptides for the therapeutic intervention for AD. Destabilzation of Abeta protofibril by Beta Sheet Breaker (BSB) peptides.![]()
Collapse
Affiliation(s)
- Vinod Jani
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
5
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
6
|
Li Y, Cao X, Tian C, Zheng JS. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Kapadia A, Patel A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Effect of C-terminus amidation of Aβ39–42fragment derived peptides as potential inhibitors of Aβ aggregation. RSC Adv 2020; 10:27137-27151. [PMID: 35515767 PMCID: PMC9055537 DOI: 10.1039/d0ra04788k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
The C-terminus fragment (Val-Val-Ile-Ala) of amyloid-β is reported to inhibit the aggregation of the parent peptide. In an attempt to investigate the effect of sequential amino-acid scan and C-terminus amidation on the biological profile of the lead sequence, a series of tetrapeptides were synthesized using MW-SPPS. Peptide D-Phe-Val-Ile-Ala-NH2 (12c) exhibited high protection against β-amyloid-mediated-neurotoxicity by inhibiting Aβ aggregation in the MTT cell viability and ThT-fluorescence assay. Circular dichroism studies illustrate the inability of Aβ42 to form β-sheet in the presence of 12c, further confirmed by the absence of Aβ42 fibrils in electron microscopy experiments. The peptide exhibits enhanced BBB permeation, no cytotoxicity along with prolonged proteolytic stability. In silico studies show that the peptide interacts with the key amino acids in Aβ, which potentiate its fibrillation, thereby arresting aggregation propensity. This structural class of designed scaffolds provides impetus towards the rational development of peptide-based-therapeutics for Alzheimer's disease (AD). Amidated C-terminal fragment, Aβ39–42 derived non-cytotoxic β-sheet breaker peptides exhibit excellent potency, enhanced bioavailability and improved proteolytic stability.![]()
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Aesan Patel
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Krishna K. Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | | | - Varinder Singh
- Post Graduate Institute of Medical Education and Research
- Chandigarh
- India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research
- Chandigarh
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
8
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
9
|
Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. PLoS Pathog 2019; 15:e1007978. [PMID: 31469892 PMCID: PMC6748439 DOI: 10.1371/journal.ppat.1007978] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/17/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases.
Collapse
|
10
|
Metabolic resistance of the D-peptide RD2 developed for direct elimination of amyloid-β oligomers. Sci Rep 2019; 9:5715. [PMID: 30952881 PMCID: PMC6450887 DOI: 10.1038/s41598-019-41993-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder leading to dementia. Aggregation of the amyloid-β peptide (Aβ) plays an important role in the disease, with Aβ oligomers representing the most toxic species. Previously, we have developed the Aβ oligomer eliminating therapeutic compound RD2 consisting solely of D-enantiomeric amino acid residues. RD2 has been described to have an oral bioavailability of more than 75% and to improve cognition in transgenic Alzheimer’s disease mouse models after oral administration. In the present study, we further examined the stability of RD2 in simulated gastrointestinal fluids, blood plasma and liver microsomes. In addition, we have examined whether RD2 is a substrate for the human D-amino acid oxidase (hDAAO). Furthermore, metabolite profiles of RD2 incubated in human, rodent and non-rodent liver microsomes were compared across species to search for human-specific metabolites that might possibly constitute a threat when applying the compound in humans. RD2 was remarkably resistant against metabolization in all investigated media and not converted by hDAAO. Moreover, RD2 did not influence the activity of any of the tested enzymes. In conclusion, the high stability and the absence of relevant human-specific metabolites support RD2 to be safe for oral administration in humans.
Collapse
|
11
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
12
|
Elfgen A, Santiago-Schübel B, Gremer L, Kutzsche J, Willbold D. Surprisingly high stability of the Aβ oligomer eliminating all-d-enantiomeric peptide D3 in media simulating the route of orally administered drugs. Eur J Pharm Sci 2017; 107:203-207. [PMID: 28711713 DOI: 10.1016/j.ejps.2017.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022]
Abstract
The aggregation of the amyloid β protein (Aβ) plays an important role in the pathology of Alzheimer's disease. Previously, we have developed the all-d-enantiomeric peptide D3, which is able to eliminate neurotoxic Aβ oligomers in vitro and improve cognition in a transgenic Alzheimer's disease mouse model in vivo even after oral administration. d-Peptides are expected to be more resistant against enzymatic proteolysis compared to their l-enantiomeric equivalents, and indeed, a pharmacokinetic study with tritiated D3 revealed the oral bioavailability to be about 58%. To further investigate the underlying properties, we examined the stability of D3 in comparison to its corresponding all-l-enantiomeric mirror image l-D3 in media simulating the gastrointestinal tract, blood and liver. Potential metabolization was followed by reversed-phase high-performance liquid chromatography. In simulated gastric fluid, D3 remained almost completely stable (89%) within 24h, while 70% of l-D3 was degraded within the same time period. Notably, in simulated intestinal fluid, D3 also remained stable (96%) for 24h, whereas l-D3 was completely metabolized within seconds. In human plasma and human liver microsomes, l-D3 was metabolized several hundred times faster than D3. The remarkably high stability may explain the high oral bioavailability seen in previous studies allowing oral administration of the drug candidate. Thus, all-d-enantiomeric peptides may represent a promising new compound class for drug development.
Collapse
Affiliation(s)
- Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Institute for Engineering, Electronics and Analytics (ZEA-3), Research Center Jülich, 52428 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
14
|
Shuaib S, Goyal B. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β 42 monomer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:663-678. [PMID: 28162045 DOI: 10.1080/07391102.2017.1291363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.
Collapse
Affiliation(s)
- Suniba Shuaib
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| | - Bhupesh Goyal
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| |
Collapse
|
15
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
16
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
17
|
Leithold LHE, Jiang N, Post J, Niemietz N, Schartmann E, Ziehm T, Kutzsche J, Shah NJ, Breitkreutz J, Langen KJ, Willuweit A, Willbold D. Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease. Eur J Pharm Sci 2016; 89:31-8. [PMID: 27086111 DOI: 10.1016/j.ejps.2016.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/15/2022]
Abstract
Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low. In contrast, some peptides consisting solely of d-enantiomeric amino acid residues were shown to combine promising therapeutic properties with high proteolytic stability and enhanced pharmacokinetic parameters. Recently, we have shown that D3 and RD2 have highly advantageous pharmacokinetic properties. Especially D3 has already proven promising properties suitable for treatment of Alzheimer's disease. Here, we analyse the pharmacokinetic profiles of D3D3 and RD2D3, which are head-to-tail tandem d-peptides built of D3 and its derivative RD2. Both D3D3 and RD2D3 show proteolytic stability in mouse plasma and organ homogenates for at least 24h and in murine and human liver microsomes for 4h. Notwithstanding their high affinity to plasma proteins, both peptides are taken up into the brain following i.v. as well as i.p. administration. Although both peptides contain identical d-amino acid residues, they are arranged in a different sequence order and the peptides show differences in pharmacokinetic properties. After i.p. administration RD2D3 exhibits lower plasma clearance and higher bioavailability than D3D3. We therefore concluded that the amino acid sequence of RD2 leads to more favourable pharmacokinetic properties within the tandem peptide, which underlines the importance of particular sequence motifs, even in short peptides, for the design of further therapeutic d-peptides.
Collapse
Affiliation(s)
- Leonie H E Leithold
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Nan Jiang
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Julia Post
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Neurology, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany.
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Pharmacokinetic Properties of a Novel d-Peptide Developed to be Therapeutically Active Against Toxic β-Amyloid Oligomers. Pharm Res 2015; 33:328-36. [DOI: 10.1007/s11095-015-1791-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
19
|
Jiang N, Leithold LHE, Post J, Ziehm T, Mauler J, Gremer L, Cremer M, Schartmann E, Shah NJ, Kutzsche J, Langen KJ, Breitkreutz J, Willbold D, Willuweit A. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease. PLoS One 2015; 10:e0128553. [PMID: 26046986 PMCID: PMC4457900 DOI: 10.1371/journal.pone.0128553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.
Collapse
Affiliation(s)
- Nan Jiang
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Leonie H. E. Leithold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julia Post
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Mauler
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lothar Gremer
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Cremer
- Structural and functional organisation of the brain, Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Schartmann
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janine Kutzsche
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Josef Langen
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (DW); (AW)
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (DW); (AW)
| |
Collapse
|
20
|
Karthiga A, Tripathi SK, Shanmugam R, Suryanarayanan V, Singh SK. Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin A complex using p27(KIP1)-derived peptidomimetic inhibitors. J Chem Biol 2014; 8:11-24. [PMID: 25584078 DOI: 10.1007/s12154-014-0124-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023] Open
Abstract
Functionally activated cyclin-dependent kinase 2 (CDK2)/cyclin A complex has been validated as an interesting therapeutic target to develop the efficient antineoplastic drug based on the cell cycle arrest. Cyclin A binds to CDK2 and activates the kinases as well as recruits the substrate and inhibitors using a hydrophobic cyclin-binding groove (CBG). Blocking the cyclin substrate recruitment on CBG is an alternative approach to override the specificity hurdle of the currently available ATP site targeting CDK2 inhibitors. Greater understanding of the interaction of CDK2/cyclin A complex with p27 (negative regulator) reveals that the Leu-Phe-Gly (LFG) motif region of p27 binds with the CBG site of cyclin A to arrest the malignant cell proliferation that induces apoptosis. In the present study, Replacement with Partial Ligand Alternatives through Computational Enrichment (REPLACE) drug design strategies have been applied to acquire LFG peptide-derived peptidomimetics library. The peptidomimetics function is equivalent with respect to substrate p27 protein fashion but does not act as an ATP antagonist. The combined approach of molecular docking, molecular dynamics (MD), and molecular electrostatic potential and ADME/T prediction were carried out to evaluate the peptidomimetics. Resultant interaction and electrostatic potential maps suggested that smaller substituent is desirable at the position of phenyl ring to interact with Trp217, Arg250, and Gln254 residues in the active site. The best docked poses were refined by the MD simulations which resulted in conformational changes. After equilibration, the structure of the peptidomimetic and receptor complex was stable. The results revealed that the various substrate protein-derived peptidomimetics could serve as perfect leads against CDK2 protein.
Collapse
Affiliation(s)
- Arumugasamy Karthiga
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003 Tamil Nadu India
| | - Sunil Kumar Tripathi
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003 Tamil Nadu India
| | - Ramasamy Shanmugam
- Department of Chemistry, Thiagarajar College, Madurai, 625009 Tamil Nadu India
| | - Venkatesan Suryanarayanan
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003 Tamil Nadu India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003 Tamil Nadu India
| |
Collapse
|
21
|
Lo AC, Tesseur I, Scopes DIC, Nerou E, Callaerts-Vegh Z, Vermaercke B, Treherne JM, De Strooper B, D'Hooge R. Dose-dependent improvements in learning and memory deficits in APPPS1-21 transgenic mice treated with the orally active Aβ toxicity inhibitor SEN1500. Neuropharmacology 2013; 75:458-66. [PMID: 24035915 DOI: 10.1016/j.neuropharm.2013.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/25/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023]
Abstract
In the Alzheimer's disease (AD) brain, accumulation of Aβ1-42 peptides is suggested to initiate a cascade of pathological events. To date, no treatments are available that can reverse or delay AD-related symptoms in patients. In the current study, we introduce a new Aβ toxicity inhibitor, SEN1500, which in addition to its block effect on Aβ1-42 toxicity in synaptophysin assays, can be administered orally and cross the blood-brain barrier without adverse effects in mice. In a different set of animals, APPPS1-21 mice were fed with three different doses of SEN1500 (1 mg/kg, 5 mg/kg and 20 mg/kg) for a period of 5 months. Cognition was assessed in a variety of behavioral tests (Morris water maze, social recognition, conditioned taste aversion and passive avoidance). Results suggest a positive effect on cognition with 20 mg/kg SEN1500 compared to control APPPS1-21 mice. However, no changes in soluble or insoluble Aβ1-40 and Aβ1-42 were detected in the brains of SEN1500-fed mice. SEN1500 also attenuated the effect of Aβ1-42 on synaptophysin levels in mouse cortical neurons, which indicated that the compound blocked the synaptic toxicity of Aβ1-42. In vitro and in vivo effects presented here suggest that SEN1500 could be an interesting AD therapeutic.
Collapse
Affiliation(s)
- Adrian C Lo
- Laboratory of Biological Psychology, University of Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium
| | - Ina Tesseur
- Center for Human Genetics, University of Leuven, Belgium; VIB Center for the Biology of Disease, VIB, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium
| | - David I C Scopes
- Senexis Limited, Babraham Research Campus, Cambridge, United Kingdom
| | - Edmund Nerou
- Senexis Limited, Babraham Research Campus, Cambridge, United Kingdom
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, University of Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium
| | - Ben Vermaercke
- Laboratory of Biological Psychology, University of Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium
| | - J Mark Treherne
- Senexis Limited, Babraham Research Campus, Cambridge, United Kingdom
| | - Bart De Strooper
- Center for Human Genetics, University of Leuven, Belgium; VIB Center for the Biology of Disease, VIB, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Belgium.
| |
Collapse
|
22
|
Wright O, Zhang L, Liu Y, Yoshimi T, Zheng Y, Tunnacliffe A. Critique of the use of fluorescence-based reporters in Escherichia coli
as a screening tool for the identification of peptide inhibitors of Aβ42 aggregation. J Pept Sci 2012; 19:74-83. [DOI: 10.1002/psc.2474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/11/2012] [Accepted: 11/06/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Oliver Wright
- Department of Chemical Engineering and Biotechnology; University of Cambridge; New Museums Site, Pembroke Street Cambridge CB2 3RA UK
| | - Liao Zhang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering; College of Life Sciences; Nanhai Ave 3688 Shenzhen City Guangdong Province China 518060
| | - Yun Liu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering; College of Life Sciences; Nanhai Ave 3688 Shenzhen City Guangdong Province China 518060
| | - Tatsuya Yoshimi
- National Center for Geriatrics and Gerontology; 35 Gengo, Morioka-machi Obu City Aichi 474-8511 Japan
| | - Yizhi Zheng
- Shenzhen Key Laboratory of Microbiology and Gene Engineering; College of Life Sciences; Nanhai Ave 3688 Shenzhen City Guangdong Province China 518060
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology; University of Cambridge; New Museums Site, Pembroke Street Cambridge CB2 3RA UK
| |
Collapse
|