1
|
Reiners JJ, Mathieu PA, Gargano M, George I, Shen Y, Callaghan JF, Borch RF, Mattingly RR. Synergistic Suppression of NF1 Malignant Peripheral Nerve Sheath Tumor Cell Growth in Culture and Orthotopic Xenografts by Combinational Treatment with Statin and Prodrug Farnesyltransferase Inhibitor PAMAM G4 Dendrimers. Cancers (Basel) 2023; 16:89. [PMID: 38201517 PMCID: PMC10778372 DOI: 10.3390/cancers16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a disorder in which RAS is constitutively activated due to the loss of the Ras-GTPase-activating activity of neurofibromin. RAS must be prenylated (i.e., farnesylated or geranylgeranylated) to traffic and function properly. Previous studies showed that the anti-growth properties of farnesyl monophosphate prodrug farnesyltransferase inhibitors (FTIs) on human NF1 malignant peripheral nerve sheath tumor (MPNST) cells are potentiated by co-treatment with lovastatin. Unfortunately, such prodrug FTIs have poor aqueous solubility. In this study, we synthesized a series of prodrug FTI polyamidoamine generation 4 (PAMAM G4) dendrimers that compete with farnesyl pyrophosphate for farnesyltransferase (Ftase) and assessed their effects on human NF1 MPNST S462TY cells. The prodrug 3-tert-butylfarnesyl monophosphate FTI-dendrimer (i.e., IG 2) exhibited improved aqueous solubility. Concentrations of IG 2 and lovastatin (as low as 0.1 μM) having little to no effect when used singularly synergistically suppressed cell proliferation, colony formation, and induced N-RAS, RAP1A, and RAB5A deprenylation when used in combination. Combinational treatment had no additive or synergistic effects on the proliferation/viability of immortalized normal rat Schwann cells, primary rat hepatocytes, or normal human mammary epithelial MCF10A cells. Combinational, but not singular, in vivo treatment markedly suppressed the growth of S462TY xenografts established in the sciatic nerves of immune-deficient mice. Hence, prodrug farnesyl monophosphate FTIs can be rendered water-soluble by conjugation to PAMAM G4 dendrimers and exhibit potent anti-tumor activity when combined with clinically achievable statin concentrations.
Collapse
Affiliation(s)
- John J. Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patricia A. Mathieu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mary Gargano
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA; (J.J.R.J.); (P.A.M.); (M.G.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irene George
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
- Currently College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - John F. Callaghan
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (I.G.); (R.F.B.)
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
2
|
Tennakoon M, Thotamune W, Payton JL, Karunarathne A. CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions. J Biol Chem 2023; 299:105269. [PMID: 37739036 PMCID: PMC10590752 DOI: 10.1016/j.jbc.2023.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA
| | - John L Payton
- Department of Chemistry, Kenyon College, Gambier, Ohio, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
3
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Haidar M, Jacquemin P. Past and Future Strategies to Inhibit Membrane Localization of the KRAS Oncogene. Int J Mol Sci 2021; 22:13193. [PMID: 34947990 PMCID: PMC8707736 DOI: 10.3390/ijms222413193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.
Collapse
Affiliation(s)
| | - Patrick Jacquemin
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
5
|
KRAS-G12C covalent inhibitors: A game changer in the scene of cancer therapies. Crit Rev Oncol Hematol 2021; 168:103524. [PMID: 34800654 DOI: 10.1016/j.critrevonc.2021.103524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
RAS is the most frequently mutated oncogene in human cancer. Scientists attempted for decades to target this protein or its pathways, however, all the attempts failed and RAS was labeled as "undruggable". With KRAS-G12C covalent inhibitors entering clinical trials, the myth of this "undruggable" RAS is fading away. In 2021, the Food and Drug Administration (FDA) approved the use of Sotorasib (Lumakras) for the treatment of adult patients with KRAS-G12C mutated locally advanced or metastatic NSCLC, following at least one prior systemic therapy. However, and as every other drug, KRAS-G12C inhibitors are facing intrinsic and acquired resistances. In order to overcome these resistances, researchers are now working on combination strategies. Furthermore, studies are currently ongoing to better elucidate the status of KRAS-G12C as a predictive and prognostic tool and to strengthen its role in the field of personalized medicine.
Collapse
|
6
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
7
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Abstract
KRAS is one of the most commonly mutated oncogene and a negative predictive factor for a number of targeted therapies. Therefore, the development of targeting strategies against mutant KRAS is urgently needed. One potential strategy involves disruption of K-Ras membrane localization, which is necessary for its proper function. In this review, we summarize the current data about the importance of membrane-anchorage of K-Ras and provide a critical evaluation of this targeting paradigm focusing mainly on prenylation inhibition. Additionally, we performed a RAS mutation-specific analysis of prenylation-related drug sensitivity data from a publicly available database (https://depmap.org/repurposing/) of three classes of prenylation inhibitors: statins, N-bisphosphonates, and farnesyl-transferase inhibitors. We observed significant differences in sensitivity to N-bisphosphonates and farnesyl-transferase inhibitors depending on KRAS mutational status and tissue of origin. These observations emphasize the importance of factors affecting efficacy of prenylation inhibition, like distinct features of different KRAS mutations, tissue-specific mutational patterns, K-Ras turnover, and changes in regulation of prenylation process. Finally, we enlist the factors that might be responsible for the large discrepancy between the outcomes in preclinical and clinical studies including methodological pitfalls, the incomplete understanding of K-Ras protein turnover, and the variation of KRAS dependency in KRAS mutant tumors.
Collapse
|
9
|
Garcia-Alvarez A, Ortiz C, Muñoz-Couselo E. Current Perspectives and Novel Strategies of NRAS-Mutant Melanoma. Onco Targets Ther 2021; 14:3709-3719. [PMID: 34135599 PMCID: PMC8202735 DOI: 10.2147/ott.s278095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest cutaneous cancer. Activating mutations in NRAS are found in 20% of melanomas. NRAS-mutant melanoma is more aggressive and, therefore, has poorer outcomes, compared to non-NRAS-mutant melanoma. Despite promising preclinical data, to date immune checkpoint inhibitors remain the standard of care for locally advanced unresectable or metastatic NRAS melanoma. Data for efficacy of immunotherapy for NRAS melanoma mainly come from retrospective cohorts with divergent conclusions. MEK inhibitors have been the most developed targeted therapy approach. Although associated with an increase in progression-free survival, MEK inhibitors do not provide any benefit in terms of overall survival. Combination strategies with PI3K-AKT-mTOR pathway and CDK4/6 inhibitors seem to increase MEK inhibitors' benefit. Nevertheless, results from clinical trials are still prelaminar. A greater comprehension of the biology and intracellular interactions of NRAS-mutant melanoma will outline novel impactful strategies which could improve prognosis of these subgroup of patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Alvarez
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Carolina Ortiz
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Eva Muñoz-Couselo
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| |
Collapse
|
10
|
Brock EJ, Jackson RM, Boerner JL, Li Q, Tennis MA, Sloane BF, Mattingly RR. Sprouty4 negatively regulates ERK/MAPK signaling and the transition from in situ to invasive breast ductal carcinoma. PLoS One 2021; 16:e0252314. [PMID: 34048471 PMCID: PMC8162601 DOI: 10.1371/journal.pone.0252314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC). It is still unclear which DCIS will become invasive and which will remain indolent. Patients often receive surgery and radiotherapy, but this early intervention has not produced substantial decreases in late-stage disease. Sprouty proteins are important regulators of ERK/MAPK signaling and have been studied in various cancers. We hypothesized that Sprouty4 is an endogenous inhibitor of ERK/MAPK signaling and that its loss/reduced expression is a mechanism by which DCIS lesions progress toward IDC, including triple-negative disease. Using immunohistochemistry, we found reduced Sprouty4 expression in IDC patient samples compared to DCIS, and that ERK/MAPK phosphorylation had an inverse relationship to Sprouty4 expression. These observations were reproduced using a 3D culture model of disease progression. Knockdown of Sprouty4 in MCF10.DCIS cells increased ERK/MAPK phosphorylation as well as their invasive capability, while overexpression of Sprouty4 in MCF10.CA1d IDC cells reduced ERK/MAPK phosphorylation, invasion, and the aggressive phenotype exhibited by these cells. Immunofluorescence experiments revealed reorganization of the actin cytoskeleton and relocation of E-cadherin back to the cell surface, consistent with the restoration of adherens junctions. To determine whether these effects were due to changes in ERK/MAPK signaling, MEK1/2 was pharmacologically inhibited in IDC cells. Nanomolar concentrations of MEK162/binimetinib restored an epithelial-like phenotype and reduced pericellular proteolysis, similar to Sprouty4 overexpression. From these data we conclude that Sprouty4 acts to control ERK/MAPK signaling in DCIS, thus limiting the progression of these premalignant breast lesions.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
Collapse
Affiliation(s)
- Ethan J. Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Ryan M. Jackson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Julie L. Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Quanwen Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Meredith A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United states of America
| | - Bonnie F. Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Raymond R. Mattingly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| |
Collapse
|
11
|
Haney SL, Varney ML, Chhonker Y, Talmon G, Smith LM, Murry DJ, Holstein SA. In vivo evaluation of combination therapy targeting the isoprenoid biosynthetic pathway. Pharmacol Res 2021; 167:105528. [PMID: 33667685 DOI: 10.1016/j.phrs.2021.105528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashpal Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey Talmon
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynette M Smith
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Hu W, Liu Z, Salato V, North PE, Bischoff J, Kumar SN, Fang Z, Rajan S, Hussain MM, Miao QR. NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight 2021; 6:142299. [PMID: 33400686 PMCID: PMC7934876 DOI: 10.1172/jci.insight.142299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Collapse
Affiliation(s)
- Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Qing R Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
Klochkov SG, Neganova ME, Aleksandrova YR. Promising Molecular Targets for Design of Antitumor Drugs Based on Ras Protein Signaling Cascades. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
15
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Lim C, Xu JC, Chen TY, Xu JX, Chen WF, Hu JW, Li QL, Zhang YQ. Ubiquitin-specific peptide 22 acts as an oncogene in gastric cancer in a son of sevenless 1-dependent manner. Cancer Cell Int 2020; 20:45. [PMID: 32063746 PMCID: PMC7011508 DOI: 10.1186/s12935-020-1137-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background Aberrant expression of ubiquitin-specific peptide 22 (USP22) has been detected in various cancers. This study aimed to investigate the role of USP22 and the underlying mechanism in human gastric cancer. Methods The expression pattern of USP22 in human gastric cancer was detected in a tissue microarray containing 88 pairs of gastric cancer tissue and adjacent normal tissue samples from patients with primary gastric cancer using immunohistochemical staining. The correlation of USP22 expression with clinical characteristics of patients, as well as their prognostic values in the overall survival of patients, were evaluated. USP22-overexpressing SGC7901 and USP22-silencing AGS cells were used to explore the role of USP22 in gastric cancer cell behavior in vitro and in vivo. Chromatin immunoprecipitation was performed to identify differentially expressed genes induced by USP22 overexpression. Western blot analysis was conducted to detect the activation of RAS/ERK and PI3K/AKT signaling in USP22-overexpressing SGC7901 cells and xenograft tumor tissues. Knockdown of RAS activator son of sevenless 1 (SOS1) was performed to investigate the role of SOS1 in USP22-regulated gastric cancer cell behavior and RAS signaling both in vitro and in vivo. Results USP22 protein expression was significantly increased in human gastric cancer tissues, compared with adjacent normal tissues, and was positively correlated with local tumor stage. Gain- and loss-of-function assays showed that USP22 promoted gastric cancer cell growth and cell cycle transition while suppressing apoptosis in vitro. Consistent results were observed in a xenograft mouse model. Chromatin immunoprecipitation revealed that the overexpression of USP22 induced the upregulation of RAS activator son of sevenless 1 (SOS1) in SGC7901 cells. Western blot analysis showed that USP22 overexpression also induced activation of the RAS/ERK and PI3K/AKT pathways in SGC7901 cells and xenograft tumor tissues. Furthermore, SOS1 silencing could reverse the effects of USP22 on gastric cancer cell behavior and RAS signaling both in vitro and in vivo. Conclusions Our results suggest that USP22 acts as an oncogene in gastric cancer in a SOS1-dependent manner, identifying the USP22/SOS1/RAS axis as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- ChitChoon Lim
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jia-Cheng Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Tian-Yin Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jia-Xin Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Wei-Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jian-Wei Hu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Yi-Qun Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| |
Collapse
|
17
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
18
|
Ye N, Xu Q, Li W, Wang P, Zhou J. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Curr Top Med Chem 2019; 19:2114-2127. [PMID: 31475899 DOI: 10.2174/1568026619666190902145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Qingfeng Xu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wanwan Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
19
|
Klochkov SG, Neganova ME, Yarla NS, Parvathaneni M, Sharma B, Tarasov VV, Barreto G, Bachurin SO, Ashraf GM, Aliev G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol 2019; 56:128-134. [DOI: 10.1016/j.semcancer.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
20
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
21
|
Yao J, Zhong L, Zhong P, Liu D, Yuan Z, Liu J, Yao S, Zhao Y, Chen M, Li L, Liu L, Liu B. RAS-Responsive Element-Binding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells. Oncol Res 2019; 27:809-818. [PMID: 30982491 PMCID: PMC7848438 DOI: 10.3727/096504018x15451301487729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RAS-responsive element-binding protein 1 (RREB1) is a transcription factor that is implicated in RAS signaling and multiple tumors. However, the role of RREB1 in acute myeloid leukemia has not been studied. We found that RREB1 is overexpressed in AML patients and myeloid leukemia cell lines (NB4 and HL-60), and RREB1 expression was significantly decreased during granulocytic differentiation of myeloid leukemia cells induced by all-trans retinoic acid (ATRA). Then we performed a RREB1 knockdown assay in NB4 and HL-60 cells; the results showed that knockdown of RREB1 upregulated expression of CD11b, CEBPβ, and microRNA-145 (miR-145), which hinted that knockdown of RREB1 enhanced granulocytic differentiation of myeloid leukemia cells. In addition, inhibitor of miR-145 can offset the enhanced effect on granulocytic differentiation mediated by downregulation of RREB1. These collective findings demonstrated that RREB1 blocks granulocytic differentiation of myeloid leukemia cells by inhibiting the expression of miR-145 and downstream targets of the RAS signal pathway. These may provide a promising therapeutic target for AML patients.
Collapse
Affiliation(s)
- Juanjuan Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Pengqiang Zhong
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Junmei Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Shifei Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Min Chen
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
22
|
Satham L, Namboothiri INN. (3 + 3) Annulation of Nitroallylic Acetates with Stabilized Sulfur Ylides for the Synthesis of 2-Aryl Terephthalates. J Org Chem 2018; 83:9471-9477. [DOI: 10.1021/acs.joc.8b00917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
24
|
Han CW, Jeong MS, Jang SB. Structure, signaling and the drug discovery of the Ras oncogene protein. BMB Rep 2018; 50:355-360. [PMID: 28571593 PMCID: PMC5584742 DOI: 10.5483/bmbrep.2017.50.7.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/04/2023] Open
Abstract
Mutations in Ras GTPase are among the most common genetic alterations in human cancers. Despite extensive research investigating Ras proteins, their functions still remain a challenge over a long period of time. The currently available data suggests that solving the outstanding issues regarding Ras could lead to development of effective drugs that could have a significant impact on cancer treatment. Developing a better understanding of their biochemical properties or modes of action, along with improvements in their pharmacologic profiles, clinical design and scheduling will enable the development of more effective therapies.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
25
|
Kraniak JM, Chalasani A, Wallace MR, Mattingly RR. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol 2018; 299:289-298. [PMID: 29055717 PMCID: PMC6863155 DOI: 10.1016/j.expneurol.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzimidazoles/pharmacology
- Bone Morphogenetic Protein 2/antagonists & inhibitors
- Cell Culture Techniques
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor/methods
- Genes, Neurofibromatosis 1
- Genes, Reporter
- Humans
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- MAP Kinase Kinase 1/antagonists & inhibitors
- Molecular Targeted Therapy
- Neurofibroma, Plexiform/drug therapy
- Neurofibroma, Plexiform/genetics
- Neurofibroma, Plexiform/pathology
- Neurofibromatosis 1/pathology
- Phenotype
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Schwann Cells/cytology
- Transduction, Genetic
- Tumor Cells, Cultured
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Janice M Kraniak
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
26
|
Epithelial-Myoepithelial Carcinoma: Frequent Morphologic and Molecular Evidence of Preexisting Pleomorphic Adenoma, Common HRAS Mutations in PLAG1-intact and HMGA2-intact Cases, and Occasional TP53, FBXW7, and SMARCB1 Alterations in High-grade Cases. Am J Surg Pathol 2017; 42:18-27. [PMID: 29135520 DOI: 10.1097/pas.0000000000000933] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We hypothesized that there is a relationship between the preexisting pleomorphic adenoma [PA]), histologic grade of epithelial-myoepithelial carcinomas (EMCAs), and genetic alterations. EMCAs (n=39) were analyzed for morphologic and molecular evidence of preexisting PA (PLAG1, HMGA2 status by fluorescence in situ hybridization, FISH, and FGFR1-PLAG1 fusion by next-generation sequencing, NGS). Twenty-three EMCAs were further analyzed by NGS for mutations and copy number variation in 50 cancer-related genes. On the basis of combined morphologic and molecular evidence of PA, the following subsets of EMCA emerged: (a) EMCAs with morphologic evidence of preexisting PA, but intact PLAG1 and HMGA2 (12/39, 31%), (b) Carcinomas with PLAG1 alterations (9/39, 23%), or (c) HMGA2 alterations (10/39, 26%), and (d) de novo carcinomas, without morphologic or molecular evidence of PA (8/39, 21%). Twelve high-grade EMCAs (12/39, 31%) occurred across all subsets. The median disease-free survival was 80 months (95% confidence interval, 77-84 mo). Disease-free survival and other clinicopathologic parameters did not differ by the above defined subsets. HRAS mutations were more common in EMCAs with intact PLAG1 and HMGA2 (7/9 vs. 1/14, P<0.001). Other genetic abnormalities (TP53 [n=2], FBXW7 [n=1], SMARCB1 deletion [n=1]) were seen only in high-grade EMCAs with intact PLAG1 and HMGA2. We conclude that most EMCAs arose ex PA (31/39, 80%) and the genetic profile of EMCA varies with the absence or presence of preexisting PA and its cytogenetic signature. Progression to higher grade EMCA with intact PLAG1 and HMGA2 correlates with the presence of TP53, FBXW7 mutations, or SMARCB1 deletion.
Collapse
|
27
|
Xie C, Li Y, Li LL, Fan XX, Wang YW, Wei CL, Liu L, Leung ELH, Yao XJ. Identification of a New Potent Inhibitor Targeting KRAS in Non-small Cell Lung Cancer Cells. Front Pharmacol 2017; 8:823. [PMID: 29184501 PMCID: PMC5694459 DOI: 10.3389/fphar.2017.00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022] Open
Abstract
KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogenic driver with mutations in 30% of non-small cell lung cancer (NSCLC). However, there is no effective clinical drug even though it has been identified as an oncogene for 30 years. In this study, we identified a small molecule inhibitor compound 0375-0604 targeting KRAS by using molecular docking based virtual screening approach. Compound 0375-0604 had a good binding affinity to KRAS in vitro and exhibited cytotoxicity in oncogenic KRAS expressing NSCLC cell lines. Further mechanism study showed that compound 0375-0604 can block the formation of the complex of guanosine triphosphate (GTP) and KRAS in vitro. In addition, compound 0375-0604 inhibited KRAS downstream signaling pathway RAF/MEK/ERK and RAF/PI3K/AKT. Finally, we also found that this compound can inhibit the cell growth through G2/M cell cycle arrest and induce apoptosis on the NSCLC cell lines harboring KRAS mutation. Therefore, compound 0375-0604 may be considered as a potential KRAS inhibitor for treatment of NSCLC carrying KRAS oncogene.
Collapse
Affiliation(s)
- Chun Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Lan-Lan Li
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chun-Li Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
28
|
Boespflug A, Caramel J, Dalle S, Thomas L. Treatment of NRAS-mutated advanced or metastatic melanoma: rationale, current trials and evidence to date. Ther Adv Med Oncol 2017; 9:481-492. [PMID: 28717400 PMCID: PMC5502949 DOI: 10.1177/1758834017708160] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The disease course of BRAF (v-raf murine sarcoma viral oncogene homolog B1)-mutant melanoma has been drastically improved by the arrival of targeted therapies. NRAS (neuroblastoma RAS viral oncogene homolog)-mutated melanoma represents 15–25% of all metastatic melanoma patients. It currently does not have an approved targeted therapy. Metastatic patients receive immune-based therapies as first-line treatments, then cytotoxic chemotherapy like carboplatin/paclitaxel (C/P), dacarbazine (DTIC) or temozolomide (TMZ) as a second-line treatment. We will review current preclinical and clinical developments in NRAS-mutated melanoma, and analyze ongoing clinical trials that are evaluating the benefit of different targeted and immune-based therapies, either tested as single agents or in combination, in NRAS-mutant melanoma.
Collapse
Affiliation(s)
| | - Julie Caramel
- Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Lyon, France
| | | | - Luc Thomas
- Service de Dermatologie, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, Cedex, France
| |
Collapse
|
29
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
30
|
A Fungus-Specific Protein Domain Is Essential for RasA-Mediated Morphogenetic Signaling in Aspergillus fumigatus. mSphere 2016; 1:mSphere00234-16. [PMID: 27921081 PMCID: PMC5137380 DOI: 10.1128/msphere.00234-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023] Open
Abstract
Ras proteins function as conserved regulators of eukaryotic growth and differentiation and are essential signaling proteins orchestrating virulence in pathogenic fungi. Here, we report the identification of a novel N-terminal domain of the RasA protein in the filamentous fungus Aspergillus fumigatus. Whereas this domain is absent in Ras homologs of higher eukaryotes, the N-terminal extension is conserved among fungi and is characterized by a short string of two to eight amino acids terminating in an invariant arginine. For this reason, we have termed the RasA N-terminal domain the invariant arginine domain (IRD). Through mutational analyses, the IRD was found to be essential for polarized morphogenesis and asexual development, with the invariant arginine residue being most essential. Although IRD truncation resulted in a nonfunctional Ras phenotype, IRD mutation was not associated with mislocalization of the RasA protein or significant changes in steady-state RasA activity levels. Mutation of the RasA IRD diminished protein kinase A (PKA) activation and resulted in decreased interaction with the Rho-type GTPase, Cdc42. Taken together, our findings reveal novel, fungus-specific mechanisms for Ras protein function and signal transduction. IMPORTANCEAspergillus fumigatus is an important fungal pathogen against which limited treatments exist. During invasive disease, A. fumigatus hyphae grow in a highly polarized fashion, forming filaments that invade blood vessels and disseminate to distant sites. Once invasion and dissemination occur, mortality rates are high. We have previously shown that the Ras signaling pathway is an important regulator of the hyphal growth machinery supporting virulence in A. fumigatus. Here, we show that functional Ras signaling in A. fumigatus requires a novel, fungus-specific domain within the Ras protein. This domain is highly conserved among fungi, yet absent in higher eukaryotes, suggesting a potentially crucial difference in the regulation of Ras pathway activity between the human host and the fungal pathogen. Exploration of the mechanisms through which this domain regulates signaling could lead to novel antifungal therapies specifically targeting fungal Ras pathways.
Collapse
|
31
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Lu S, Jang H, Zhang J, Nussinov R. Inhibitors of Ras-SOS Interactions. ChemMedChem 2015; 11:814-21. [PMID: 26630662 DOI: 10.1002/cmdc.201500481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD, 21702, USA. .,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|