1
|
Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, Jacob M, Reddy PH, Sehar U. Artificial intelligence in Parkinson's disease: Early detection and diagnostic advancements. Ageing Res Rev 2024; 99:102410. [PMID: 38972602 DOI: 10.1016/j.arr.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, globally affecting men and women at an exponentially growing rate, with currently no cure. Disease progression starts when dopaminergic neurons begin to die. In PD, the loss of neurotransmitter, dopamine is responsible for the overall communication of neural cells throughout the body. Clinical symptoms of PD are slowness of movement, involuntary muscular contractions, speech & writing changes, lessened automatic movement, and chronic tremors in the body. PD occurs in both familial and sporadic forms and modifiable and non-modifiable risk factors and socioeconomic conditions cause PD. Early detectable diagnostics and treatments have been developed in the last several decades. However, we still do not have precise early detectable biomarkers and therapeutic agents/drugs that prevent and/or delay the disease process. Recently, artificial intelligence (AI) science and machine learning tools have been promising in identifying early detectable markers with a greater rate of accuracy compared to past forms of treatment and diagnostic processes. Artificial intelligence refers to the intelligence exhibited by machines or software, distinct from the intelligence observed in humans that is based on neural networks in a form and can be used to diagnose the longevity and disease severity of disease. The term Machine Learning or Neural Networks is a blanket term used to identify an emerging technology that is created to work in the way of a "human brain" using many intertwined neurons to achieve the same level of raw intelligence as that of a brain. These processes have been used for neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, to assess the severity of the patient's condition. In the current article, we discuss the prevalence and incidence of PD, and currently available diagnostic biomarkers and therapeutic strategies. We also highlighted currently available artificial intelligence science and machine learning tools and their applications to detect disease and develop therapeutic interventions.
Collapse
Affiliation(s)
- Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis. SENSORS 2022; 22:s22103700. [PMID: 35632109 PMCID: PMC9148133 DOI: 10.3390/s22103700] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
The aim of this study was to determine which supervised machine learning (ML) algorithm can most accurately classify people with Parkinson’s disease (pwPD) from speed-matched healthy subjects (HS) based on a selected minimum set of IMU-derived gait features. Twenty-two gait features were extrapolated from the trunk acceleration patterns of 81 pwPD and 80 HS, including spatiotemporal, pelvic kinematics, and acceleration-derived gait stability indexes. After a three-level feature selection procedure, seven gait features were considered for implementing five ML algorithms: support vector machine (SVM), artificial neural network, decision trees (DT), random forest (RF), and K-nearest neighbors. Accuracy, precision, recall, and F1 score were calculated. SVM, DT, and RF showed the best classification performances, with prediction accuracy higher than 80% on the test set. The conceptual model of approaching ML that we proposed could reduce the risk of overrepresenting multicollinear gait features in the model, reducing the risk of overfitting in the test performances while fostering the explainability of the results.
Collapse
|