1
|
Li X, Hu W, Shen J, Li M, Gong W. Targeting proteasome enhances anticancer activity of oncolytic HSV-1 in colorectal cancer. Virology 2023; 578:13-21. [PMID: 36434905 DOI: 10.1016/j.virol.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Herpes simplex virus 1 (HSV-1) has been widely used to treat various cancers, but its efficacy is limited. Studies indicated that combining HSV-1 and chemotherapy drugs can effectively improve the lethality of HSV-1 in tumor cells, which has a synergistic effect. Here, we explored the oncolytic effect and mechanism of bortezomib and HSV-1 on colorectal cancer cells, HCT116 and Caco-2. First, we selected four drugs to detect cell viability and found that the strongest HSV-1-promoting effect was achieved using bortezomib + HSV-1 treatment. Bortezomib combined with HSV-1 treatment significantly upregulated the expression of heat shock proteins, endoplasmic reticulum stress-related proteins and apoptosis-related proteins, while Bcl-2 was downregulated. JC-1 staining revealed that combining bortezomib and HSV-1 promotes cell apoptosis. In addition, bortezomib + oHSV-1 treatment effectively inhibit tumor growth. These results indicate that bortezomib combined with HSV-1 induce intense endoplasmic reticulum stress and activate the caspase-12 apoptosis pathway, killing tumor cells.
Collapse
Affiliation(s)
- Xiaxi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jiangang Shen
- Department of Gastroenterology, People's Hospital of Longhua District of Shenzhen, Shenzhen, Guangdong, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
3
|
Ziogas DC, Martinos A, Petsiou DP, Anastasopoulou A, Gogas H. Beyond Immunotherapy: Seizing the Momentum of Oncolytic Viruses in the Ideal Platform of Skin Cancers. Cancers (Basel) 2022; 14:2873. [PMID: 35740539 PMCID: PMC9221332 DOI: 10.3390/cancers14122873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the durable remissions induced by ICIs and targeted therapies in advanced melanoma and non-melanoma skin cancers, both subtypes usually relapse. Many systematic therapies have been tested to increase efficacy and delay relapse in ICIs, but their success has been limited. Due the feasibility of this approach, skin cancers have become the ideal platform for intralesional infusions of many novel agents, including oncolytic viruses (OVs). Talimogene laherparepvec (T-VEC) was the first FDA-approved OV for the treatment of unresectable melanoma and this virus opened up further potential for the use of this class of agents, especially in combination with ICIs, in order to achieve deeper and longer immune-mediated responses. However, the recently announced phase III MASTERKEY-265 trial was not able to confirm that the addition of T-VEC to pembrolizumab treatment improves progression-free or overall survival over the use of pembrolizumab alone. Despite these results, numerous studies are currently active, evaluating T-VEC and several other OVs as monotherapies or in regimens with ICIs in different subtypes of skin cancer. This overview provides a comprehensive update on the evolution status of all available OVs in melanoma and non-melanoma skin cancers and summarizes the more interesting preclinical findings, the latest clinical evidence, and the future insights in relation to the expected selective incorporation of some of these OVs into oncological practice.
Collapse
Affiliation(s)
| | | | | | | | - Helen Gogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.C.Z.); (A.M.); (D.-P.P.); (A.A.)
| |
Collapse
|
4
|
Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 2019; 49:201-209. [PMID: 30462296 DOI: 10.1093/jjco/hyy170] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
Oncolytic virus therapy is a promising new option for cancer. It utilizes genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming normal cells. T-VEC (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in 2015 and subsequently approved in Europe in 2016. Other oncolytic viruses using different parental viruses have also been tested in Phase III clinical trials and are ready for drug approval: Pexa-Vec (pexastimogene devacirepvec), an oncolytic vaccinia virus, CG0070, an oncolytic adenovirus, and REOLYSIN (pelareorep), an oncolytic reovirus. In Japan, as of May 2018, several oncolytic viruses have been developed, and some have already proceeded to clinical trials. In this review, we summarize clinical trials assessing oncolytic virus therapy that were conducted or are currently ongoing in Japan, specifically, T-VEC, the abovementioned oncolytic herpes simplex virus type 1, G47Δ, a third-generation oncolytic herpes simplex virus type 1, HF10, a naturally attenuated oncolytic herpes simplex virus type 1, Telomelysin, an oncolytic adenovirus, Surv.m-CRA, another oncolytic adenovirus, and Sendai virus particle. In the near future, oncolytic virus therapy may become an important and major treatment option for cancer in Japan.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
Oncolytic virotherapy is a kind of antitumor therapy using viruses with natural or engineered tumor-selective replication to intentionally infect and kill tumor cells. An early clinical trial has been performed in the 1950s using wild-type and non-engineered in vitro-passaged virus strains and vaccine strains (first generation oncolytic viruses). Because of the advances in biotechnology and virology, the field of virotherapy has rapidly evolved over the past two decades and innovative recombinant selectivity-enhanced viruses (second generation oncolytic viruses). Nowadays, therapeutic transgene-delivering "armed" oncolytic viruses (third generation oncolytic viruses) have been engineered using many kinds of viruses. In this chapter, the history, mechanisms, rationality, and advantages of oncolytic virotherapy by herpes simplex virus (HSV) are mentioned. Past and ongoing clinical trials by oncolytic HSVs (G207, HSV1716, NV1020, HF10, Talimogene laherparepvec (T-VEC, OncoVEXGM-CSF)) are also summarized. Finally, the way of enhancement of oncolytic virotherapy by gene modification or combination therapy with radiation, chemotherapy, or immune checkpoint inhibitors are discussed.
Collapse
|
6
|
Asad AS, Moreno Ayala MA, Gottardo MF, Zuccato C, Nicola Candia AJ, Zanetti FA, Seilicovich A, Candolfi M. Viral gene therapy for breast cancer: progress and challenges. Expert Opin Biol Ther 2017; 17:945-959. [DOI: 10.1080/14712598.2017.1338684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antonela S. Asad
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela A. Moreno Ayala
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Florencia Gottardo
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Zuccato
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología César Milstein (ICT Milstein), Unidad Ejecutora del Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs. Gene Ther 2016; 23:460-8. [PMID: 26905370 DOI: 10.1038/gt.2016.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Urothelial bladder cancer is the most common malignancy of the urinary tract. Although most cases are initially diagnosed as non-muscle-invasive, more than 80% of patients will develop recurrent or metastatic tumors. No effective therapy exists currently for late-stage metastatic tumors. By intravesical application, local administration of oncolytic Herpes Simplex virus (oHSV-1) can provide a promising new therapy for this disease. However, its inherent neurotoxicity has been a perceived limitation for such application. In this study, we present a novel microRNA-regulatory approach to reduce HSV-1-induced neurotoxicity by suppressing viral replication in neurons while maintaining oncolytic selectivity toward urothelial tumors. Specifically, we designed a recombinant virus that utilizes differentially expressed endogenous microR143 (non-cancerous, ubiquitous) and microR124 (neural-specific) to regulate expression of ICP-4, a gene essential for HSV-1 replication. We found that expression of ICP-4 must be controlled by a combination of both miR143 and miR124 to achieve the most effective attenuation in HSV-1-induced toxicity while retaining maximal oncolytic capacity. These results suggest that interaction between miR143 and miR124 may be required to successfully regulate HSV-1 replication. Our resent study is the first proof-in-principle that miRNA combination can be exploited to fine-tune the replication of HSV-1 to treat human cancers.
Collapse
|
8
|
Kundranda M, Kachaamy T. Promising new therapies in advanced pancreatic adenocarcinomas. Future Oncol 2015; 10:2629-41. [PMID: 25531049 DOI: 10.2217/fon.14.197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease due to late diagnosis, early metastasis and the lack of effective therapies. In patients with metastatic disease, 1-year survival ranges from 17 to 23% and 5-year survival is less than 5%. This necessitates an urgent need for developing more effective therapies. Targeting the neoplastic cells has been largely ineffective due to the dense stroma, which is a physical barrier for effective drug delivery and also a source for different factors that promote tumor progression and immunosuppression. In this review, we focus on understanding the complex biology of this tumor as it relates to the evaluation of previously failed molecularly targeted trials and review potential new therapies that are emerging in the treatment of metastatic pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Madappa Kundranda
- Department of Medical Oncology, Cancer Treatment Centers of America at Western Regional Medical Center, 14200 W. Fillmore St., Goodyear, AZ 85338, USA
| | | |
Collapse
|
9
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
10
|
Filatov F, Shargunov A. Short nucleotide sequences in herpesviral genomes identical to the human DNA. J Theor Biol 2015; 372:12-21. [PMID: 25728788 DOI: 10.1016/j.jtbi.2015.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/08/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
In 2010, we described many similar DNA sequences in human and viral genomes, including herpesviral ones. The data obtained allowed us to suggest that these motifs may provide the antiviral protection by mating with a complementary potential target and destroying it by the catalytic way like small interfering RNA, siRNA. Since we have analyzed these viruses as a group, two major issues seemed to us curious: (1) the number of such motifs in genomes of various herpesvirus types, and (2) distribution of these motifs in an individual viral genome. Here we searched only the herpesviral genomes for short (>20nt) continuous sequences (hits) that are totally identical to the sequences of human DNA. We found that different viral genes and genomes of different herpesviruses contain different amount of such hits. Assuming like in previous paper that the density of these hits in viral genes is associated with the probability to be targets for cellular siRNA, we consider the genomic allocation of this density as a hypothetical targetome map of the human herpesviruses. We combined all nine types of herpesviruses in the three groups according the hit concentration in their genomes and found that the resulting sequence corresponds to the type of cellular pathology caused by a virus. We do not assert now that this trend also relates to other human viruses or other viruses in general. As the GenBank continues to fill, it would be highly advisable to conduct further relevant research. We also suggested that a high hits concentration we found in the gene RL1 (ICP34.5) of the herpes simplex virus type 1 (HSV1) can make this gene a likely target for putative cellular endogenous siRNA. Artificial blockade of the gene RL1 attaches oncolytic properties to HSV1, and we do not exclude the possibility that part of the HSV1 population in humans with blocked RL1 in vivo, may participate in early anti-cancer protection during the reactivation of the virus from the latent state.
Collapse
Affiliation(s)
- Felix Filatov
- Department of Scientific and Clinic Viral Diagnostics, Hematology Research Center, Ministry of Public Health, Moscow, Russian Federation.
| | - Alexander Shargunov
- Laboratory of Bioinformatics, Mechnikov Research Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
11
|
Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy. Methods Mol Biol 2015; 1254:269-93. [PMID: 25431072 DOI: 10.1007/978-1-4939-2152-2_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.
Collapse
|
12
|
Tan G, Kasuya H, Sahin TT, Yamamura K, Wu Z, Koide Y, Hotta Y, Shikano T, Yamada S, Kanzaki A, Fujii T, Sugimoto H, Nomoto S, Nishikawa Y, Tanaka M, Tsurumaru N, Kuwahara T, Fukuda S, Ichinose T, Kikumori T, Takeda S, Nakao A, Kodera Y. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer 2014; 136:1718-30. [PMID: 25156870 DOI: 10.1002/ijc.29163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 02/05/2023]
Abstract
Breast cancer is one of the most common and feared cancers faced by women. The prognosis of patients with advanced or recurrent breast cancer remains poor despite refinements in multimodality therapies involving chemotherapeutic and hormonal agents. Multimodal therapy with more specific and effective strategy is urgently needed. The oncolytic herpes simplex virus (HSV) has potential to become a new effective treatment option because of its broad host range and tumor selective viral distribution. Bevacizumab is a monoclonal antibody against VEGFA, which inhibits angiogenesis and therefore tumor growth. Our approach to enhance the antitumor effect of the oncolytic HSV is to combine oncolytic HSV HF10 and bevacizumab in the treatment of breast cancer. Our results showed that bevacizumab enhanced viral distribution as well as tumor hypoxia and expanded the population of apoptotic cells and therefore induced a synergistic antitumor effect. HF10 is expected to be a promising agent in combination with bevacizumab in the anticancer treatment.
Collapse
Affiliation(s)
- Gewen Tan
- Department of Surgery II, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
14
|
Yamamura K, Kasuya H, Sahin TT, Tan G, Hotta Y, Tsurumaru N, Fukuda S, Kanda M, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Fujii T, Sugimoto H, Koike M, Nomoto S, Fujiwara M, Tanaka M, Kodera Y. Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann Surg Oncol 2013; 21:691-8. [PMID: 24170435 DOI: 10.1245/s10434-013-3329-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is the potential to use replication-competent oncolytic viruses to treat cancer. We evaluated the efficacy of HF10, a herpes simplex virus type 1 (HSV-1) mutant, in combination with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in human pancreatic cancer xenograft models. METHODS The viability of human pancreatic cancer cell lines (BxPC-3 and PANC-1) treated with HF10 and erlotinib, on their own or in combination, was determined. Effects of erlotinib on HF10 entry into tumor cells were also investigated. BxPC-3 subcutaneous tumor-bearing mice were treated with HF10 and erlotinib, on their own or in combination, with effects on tumor volume determined. Immunohistochemical examination of HSV-1 and CD31 was conducted to assess virus distribution and angiogenesis within tumors. A peritoneally disseminated BxPC-3 xenograft model was evaluated for survival. RESULTS HF10 combined with erlotinib demonstrated the highest cytotoxicity against BxPC-3. A combination effect was not observed in PANC-1 cells, and erlotinib did not affect virus entry into tumor cells. In the peritoneally disseminated model, HF10 combined with erlotinib had no beneficial effect on survival. In the subcutaneous tumor model, combination therapy resulted in the inhibition of tumor growth to a greater extent than using each agent on its own. Immunohistochemistry revealed that virus distribution within the tumor persisted in the combination therapy group. CONCLUSIONS Combination therapy with HF10 and erlotinib warrants further investigation to establish a new treatment strategy against human pancreatic cancers.
Collapse
Affiliation(s)
- Kazuo Yamamura
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
16
|
Xu C, Li H, Su C, Li Z. Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333:1-8. [PMID: 23354590 DOI: 10.1016/j.canlet.2013.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is one of the most devastating diseases with very poor prognosis. Only a small proportion is curable by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Therefore, there is an urgent need for the development of novel therapeutic approaches to improve the patient outcome. Recently the viral therapy is emerging as a novel effective therapeutic approach for cancer with the potential to selectively treat both primary tumor and metastatic lesions. This review provides an overview of the current status of viral treatment for pancreatic cancer, both in the laboratories and in clinical settings.
Collapse
Affiliation(s)
- Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
17
|
Sahin TT, Kasuya H, Nomura N, Shikano T, Yamamura K, Gewen T, Kanzaki A, Fujii T, Sugae T, Imai T, Nomoto S, Takeda S, Sugimoto H, Kikumori T, Kodera Y, Nishiyama Y, Nakao A. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther 2011; 19:229-37. [PMID: 22193629 DOI: 10.1038/cgt.2011.80] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oncolytic viruses are a promising method of cancer therapy, even for advanced malignancies. HF10, a spontaneously mutated herpes simplex type 1, is a potent oncolytic agent. The interaction of oncolytic herpes viruses with the tumor microenvironment has not been well characterized. We injected HF10 into tumors of patients with recurrent breast carcinoma, and sought to determine its effects on the tumor microenvironment. Six patients with recurrent breast cancer were recruited to the study. Tumors were divided into two groups: saline-injected (control) and HF10-injected (treatment). We investigated several parameters including neovascularization (CD31) and tumor lymphocyte infiltration (CD8, CD4), determined by immunohistochemistry, and apoptosis, determined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Median apoptotic cell count was lower in the treatment group (P=0.016). Angiogenesis was significantly higher in treatment group (P=0.032). Count of CD8-positive lymphocytes infiltrating the tumors was higher in the treatment group (P=0.008). We were unable to determine CD4-positive lymphocyte infiltration. An effective oncolytic viral agent must replicate efficiently in tumor cells, leading to higher viral counts, in order to aid viral penetration. HF10 seems to meet this criterion; furthermore, it induces potent antitumor immunity. The increase in angiogenesis may be due to either viral replication or the inflammatory response.
Collapse
Affiliation(s)
- T T Sahin
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.
Collapse
|
19
|
Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, Mescheder A, Nemunaitis J, Reid TR, Sze DY, Tanabe KK, Tawfik H. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010; 21:1119-28. [PMID: 20486770 DOI: 10.1089/hum.2010.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This multicenter phase I/II study evaluated the safety, pharmacokinetics, and antitumor effects of repeated doses of NV1020, a genetically engineered oncolytic herpes simplex virus, in patients with advanced metastatic colorectal cancer (mCRC). Patients with liver-dominant mCRC received four fixed NV1020 doses via weekly hepatic artery infusion, followed by two or more cycles of conventional chemotherapy. Phase I included cohorts receiving 3 × 10(6), 1 × 10(7), 3 × 10(7), and 1 × 10(8) plaque-forming units (PFU)/dose to determine the optimal biological dose (OBD) for phase II. Blind independent computed tomography scan review was based on RECIST (response evaluation criteria in solid tumors) to assess hepatic tumor response. Phase I and II enrolled 13 and 19 patients, respectively. Patients experienced transient mild-moderate febrile reactions after each NV1020 infusion. Grade 3/4 virus-related toxicity was limited to transient lymphopenia in two patients. NV1020 shedding was not detected. Simultaneous cytokine and grade 1 coagulation perturbations were dose-limiting at 1 × 10(8) PFU/dose, considered the OBD. All 22 OBD patients had previously received 5-fluorouracil; most had received oxaliplatin or irinotecan (50% had both), many with at least one targeted agent. After NV1020 administration, 50% showed stable disease. The best overall tumor control rate after chemotherapy was 68% (1 partial response, 14 stable disease); this did not correlate with baseline variables or chemotherapy. Median time to progression was 6.4 months (95% confidence interval: 2, 8.9); median overall survival was 11.8 months (95% confidence interval: 8.3, 20.7). One-year survival was 47.2%. We conclude that NV1020 stabilizes liver metastases with minimal toxicity in mCRC. It may resensitize metastases to salvage chemotherapy and extend overall survival. A randomized phase II/III trial now appears justified.
Collapse
Affiliation(s)
- Sunil K Geevarghese
- Department of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Possible DNA viral factors of human breast cancer. Cancers (Basel) 2010; 2:498-512. [PMID: 24281079 PMCID: PMC3835088 DOI: 10.3390/cancers2020498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
Viruses are considered to be one of the high-risk factors closely related to human breast cancer. However, different studies of viruses in breast cancer present conflicting results and some of these works remain in dispute. DNA viruses, such as specific types of human papillomaviruses (HPV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), herpes simplex virus (HSV), and human herpes virus type 8 (HHV-8), have emerged as causal factors of some human cancers. These respective exogenous viruses and the possibility of multiple viral factors are discussed in this review.
Collapse
|
21
|
Boisgerault N, Tangy F, Gregoire M. New perspectives in cancer virotherapy: bringing the immune system into play. Immunotherapy 2010; 2:185-99. [DOI: 10.2217/imt.10.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite constant advances in medically orientated cancer studies, conventional treatments by surgery, chemotherapy or radiotherapy remain partly ineffective against numerous cancers. Oncolytic virotherapy – the use of replication-competent viruses that specifically target tumor cells – has opened up new perspectives for improved treatment of these pathologies. Certain viruses demonstrate a natural, preferential tropism for tumor cells, while others can be genetically modified to show such an effect. Several of these viruses have already been used in preclinical and clinical trials in different tumor models; these studies have provided encouraging results and, thus, confirm the growing interest presented by this therapeutic strategy. The role of the immune system in the efficacy of cancer virotherapy has been poorly documented for a long time; however, several recent reports have presented evidence of synergistic effects between both direct viral oncolysis and the activation of specific, anti-tumor immune responses. These findings offer an exciting outlook for the future of cancer virotherapy.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Inserm, U892, CRCNA, IRTUN, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| | - Frédéric Tangy
- Pasteur Institute, LGVV, 28 rue du Docteur Roux, 75015 Paris, France
| | - Marc Gregoire
- Inserm, U892, CRCNA, IRTUN, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| |
Collapse
|
22
|
Müther N, Noske N, Ehrhardt A. Viral hybrid vectors for somatic integration - are they the better solution? Viruses 2009; 1:1295-324. [PMID: 21994594 PMCID: PMC3185507 DOI: 10.3390/v1031295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system.
Collapse
Affiliation(s)
- Nadine Müther
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Nadja Noske
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| |
Collapse
|
23
|
Medical application of herpes simplex virus. J Dermatol Sci 2009; 57:75-82. [PMID: 19939634 DOI: 10.1016/j.jdermsci.2009.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are important human pathogens that cause a variety of diseases from mild skin diseases such as herpes labialis and herpes genitalis to life-threatening diseases such as herpes encephalitis and neonatal herpes. A number of studies have elucidated the roles of this virus in viral replication and pathogenicity, the regulation of gene expression, interaction with the host cell and immune evasion from the host system. This research has allowed the development of potential therapeutic agents and vectors for human diseases. This review focuses on the basic functions and roles of HSV gene products and reviews the current knowledge of medical applications of genetically engineered HSV mutants using different strategies. These major HSV-derived vectors include: (i) amplicons for gene delivery vectors; (ii) replication-defective HSV recombinants for vaccine vectors; (iii) replication-attenuated HSV recombinants for oncolytic virotherapy.
Collapse
|
24
|
Sverdlov ED. Not gene therapy, but genetic surgery-the right strategy to attack cancer. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY : MOLEKULYARNAYA GENETIKA, MIKROBIOLOGIYA I VIRUSOLOGIYA 2009; 24:93-113. [PMID: 32214647 PMCID: PMC7089455 DOI: 10.3103/s089141680903001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, I will suggest to divide all the approaches united now under common term "gene therapy" into two broad strategies of which the first one uses the methodology of targeted therapy with all its characteristics, but with genes in the role of agents targeted at a certain molecular component(s) presumably crucial for cancer maintenance. In contrast, the techniques of the other strategy are aimed at the destruction of tumors as a whole using the features shared by all cancers, for example relatively fast mitotic cell division or active angiogenesis. While the first strategy is "true" gene therapy, the second one is more like genetic surgery when a surgeon just cuts off a tumor with his scalpel and has no interest in knowing delicate mechanisms of cancer emergence and progression. I will try to substantiate the idea that the last strategy is the only right one, and its simplicity is paradoxically adequate to the super-complexity of tumors that originates from general complexity of cell regulation, strongly disturbed in tumor cells, and especially from the complexity of tumors as evolving cell populations, affecting also their ecological niche formed by neighboring normal cells and tissues. An analysis of the most widely used for such a "surgery" suicide gene/prodrug combinations will be presented in some more details.
Collapse
Affiliation(s)
- E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAN, Moscow, Russia
| |
Collapse
|
25
|
Ishida D, Nawa A, Tanino T, Goshima F, Luo CH, Iwaki M, Kajiyama H, Shibata K, Yamamoto E, Ino K, Tsurumi T, Nishiyama Y, Kikkawa F. Enhanced cytotoxicity with a novel system combining the paclitaxel-2'-ethylcarbonate prodrug and an HSV amplicon with an attenuated replication-competent virus, HF10 as a helper virus. Cancer Lett 2009; 288:17-27. [PMID: 19604626 DOI: 10.1016/j.canlet.2009.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/22/2009] [Accepted: 06/16/2009] [Indexed: 11/15/2022]
Abstract
We previously demonstrated that HF10, which is a natural, non-engineered HSV-1, has potent oncolytic activity in the treatment of solid malignant tumors in vitro and in vivo [H. Takakuwa, F. Goshima, N. Nozawa, T. Yoshikawa, H. Kimata, A. Nakao, et al., Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice, Arch. Virol. 148 (2003) 813-825; S. Kohno, C. Lou, F. Goshima, Y. Nishiyama, T. Sata, Y. Ono, Herpes simplex virus type 1 mutant HF10 oncolytic viral therapy for bladder cancer, Urology 66 (2005) 1116-1121; D. Watanabe, F. Goshima, I. Mori, Y. Tamada, Y. Matsumoto, Y. Nishiyama, Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10, J. Dermatol. Sci. 50 (2008) 185-196; A. Nawa, C. Luo, L. Zhang, Y. Ushijima, D. Ishida, M. Kamakura, et al., Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF10: applications for cancer gene therapy, Curr. Gene. Ther. 8 (2008) 208-221]. Previous reports have also shown that a combination of HF10 and paclitaxel (TAX) was more efficacious than either regimen alone for some types of malignant tumors [S. Shimoyama, F. Goshima, O. Teshigahara, H. Kasuya, Y. Kodera, A. Nakao, et al., Enhanced efficacy of herpes simplex virus mutant HF10 combined with paclitaxel in peritoneal cancer dissemination models, Hepatogastroenterology 54 (2007) 1038-1042]. In this study, we investigated the efficacy of gene-directed enzyme prodrug therapy (GDEPT) using a novel system that combines the paclitaxel-2'-ethylcarbonate prodrug (TAX-2'-Et) and an HSV amplicon expressing rabbit-carboxylesterase (CES) with HF10 as a helper virus. This GDEPT system aims to produce high level of CES at the tumor site, resulting in efficient local conversion of the TAX-2'-Et prodrug into the active drug TAX [A. Nawa, T. Tanino, C. Lou, M. Iwaki, H. Kajiyama, K. Shibata, et al., Gene directed enzyme prodrug therapy for ovarian cancer: could GDEPT become a promising treatment against ovarian cancer?, Anti-Cancer Agents Med Chem 8 (2008) 232-239]. We demonstrated that the green fluorescent protein (GFP) gene, as a trace maker, was more efficiently introduced by the HSV amplicon compared to the expression vector, pHGCX, and that the HSV amplicon system expressed an active CES enzyme that could convert TAX-2'-Et to TAX in Cos7 cells. Furthermore, although the cytotoxicity of this amplicon system was not enhanced in virus-sensitive tumor cells, it was significantly enhanced in low virus-sensitive tumor cells in the presence of the prodrug in a concentration-dependent manner, compared to the control virus alone (p<0.05). These results indicate that the addition of a prodrug converting enzyme may be a feasible approach to further enhance the efficacy of HF10 as a cancer therapeutics in low HF10-sensitive malignancies.
Collapse
Affiliation(s)
- Daisuke Ishida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|