1
|
Kisku A, Nishad A, Agrawal S, Paliwal R, Datusalia AK, Gupta G, Singh SK, Dua K, Sulakhiya K. Recent developments in intranasal drug delivery of nanomedicines for the treatment of neuropsychiatric disorders. Front Med (Lausanne) 2024; 11:1463976. [PMID: 39364023 PMCID: PMC11446881 DOI: 10.3389/fmed.2024.1463976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Neuropsychiatric disorders are multifaceted syndromes with confounding neurological explanations. It includes anxiety, depression, autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, Tourette's syndrome, delirium, dementia, vascular cognitive impairment, and apathy etc. Globally, these disorders occupy 15% of all diseases. As per the WHO, India has one of the largest populations of people with mental illnesses worldwide. The blood-brain barrier (BBB) makes it extremely difficult to distribute medicine to target cells in the brain tissues. However, it is possible through novel advancements in nanotechnology, molecular biology, and neurosciences. One such cutting-edge delivery method, nose-to-brain (N2B) drug delivery using nanoformulation (NF), overcomes traditional drug formulation and delivery limitations. Later offers more controlled drug release, better bioavailability, improved patient acceptance, reduced biological interference, and circumvention of BBB. When medicines are delivered via the intranasal (IN) route, they enter the nasal cavity and go to the brain via connections between the olfactory and trigeminal nerves and the nasal mucosa in N2B. Delivering phytochemical, bioactive and synthetic NF is being investigated with the N2B delivery strategy. The mucociliary clearance, enzyme degradation, and drug translocations by efflux mechanisms are significant issues associated with N2B delivery. This review article discusses the types of neuropsychiatric disorders and their treatment with plant-derived as well as synthetic drug-loaded NFs administered via the IN-delivery system. In conclusion, this review provided a comprehensive and critical overview of the IN applicability of plant-derived NFs for psychiatric disorders.
Collapse
Affiliation(s)
- Anglina Kisku
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Ambresh Nishad
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Saurabh Agrawal
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory (NBRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW, Australia
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
2
|
Annu, Rehman S, Nabi B, Sartaj A, Md S, Sahoo PK, Baboota S, Ali J. Nanoparticle Mediated Gene Therapy: A Trailblazer Armament to Fight CNS Disorders. Curr Med Chem 2023; 30:304-315. [PMID: 34986767 DOI: 10.2174/0929867329666220105122318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) disorders account for boundless socioeconomic burdens with devastating effects among the population, especially the elderly. The major symptoms of these disorders are neurodegeneration, neuroinflammation, and cognitive dysfunction caused by inherited genetic mutations or by genetic and epigenetic changes due to injury, environmental factors, and disease-related events. Currently available clinical treatments for CNS diseases, i.e., Alzheimer's disease, Parkinson's disease, stroke, and brain tumor, have significant side effects and are largely unable to halt the clinical progression. So gene therapy displays a new paradigm in the treatment of these disorders with some modalities, varying from the suppression of endogenous genes to the expression of exogenous genes. Both viral and non-viral vectors are commonly used for gene therapy. Viral vectors are quite effective but associated with severe side effects, like immunogenicity and carcinogenicity, and poor target cell specificity. Thus, non-viral vectors, mainly nanotherapeutics like nanoparticles (NPs), turn out to be a realistic approach in gene therapy, achieving higher efficacy. NPs demonstrate a new avenue in pharmacotherapy for the delivery of drugs or genes to their selective cells or tissue, thus providing concentrated and constant drug delivery to targeted tissues, minimizing systemic toxicity and side effects. The current review will emphasize the role of NPs in mediating gene therapy for CNS disorders treatment. Moreover, the challenges and perspectives of NPs in gene therapy will be summarized.
Collapse
Affiliation(s)
- Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi-110017, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
3
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Zhang H, Zou Q, Ju Y, Song C, Chen D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220404145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.
Objective:
General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results
Method:
First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.
Results:
The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.
Conclusion:
These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.
Collapse
Affiliation(s)
- Haoyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chenggang Song
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
6
|
Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol 2022; 10:788128. [PMID: 35186901 PMCID: PMC8851324 DOI: 10.3389/fbioe.2022.788128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
The delivery of therapeutic molecules to the brain remains an unsolved problem to the researchers due to the existence of the blood-brain barrier (BBB), which halts the entry of unwanted substances to the brain. Central nervous system (CNS) disorders, mainly Parkinson's disease, Alzheimer's disease, schizophrenia, brain tumors, and stroke, are highly prevalent globally and are a growing concern for researchers due to restricting the delivery of pharmaceutical drugs to the brain. So effective treatment modalities are essential to combat the growing epidemic of CNS diseases. Recently, the growing attention in the field of nanotechnology has gained the faith of researchers for the delivery of therapeutics to the brain by targeting them to the specific target site. Polymeric nanoparticles (PNPs) emerge out to be an instrumental approach in drug targeting to the brain by overcoming the physiological barrier, biomedical barrier, and BBB. Preclinical discovery has shown the tremendous potential and versatility of PNPs in encapsulating several drugs and their targeting to the deepest regions of the brain, thus improving therapeutic intervention of CNS disorders. The current review will summarize advances in the development of PNPs for targeting therapeutics to the brain and the functional and molecular effects obtained in the preclinical model of most common CNS diseases. The advancement of PNPs in clinical practice and their prospect in brain targeting will also be discussed briefly.
Collapse
Affiliation(s)
- Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
7
|
Ashraf GM, Uddin MS. Gene Therapy for Neuroprotection and Neurorestoration (Part II). Curr Gene Ther 2020; 20:163. [PMID: 33054704 DOI: 10.2174/156652322003200901112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|