1
|
Canoy RJ, Sy JC, Deguit CD, Castro CB, Dimaapi LJ, Panlaqui BG, Perian W, Yu J, Velasco JM, Sevilleja JE, Gibson A. Non-coding RNAs involved in the molecular pathology of Alzheimer's disease: a systematic review. Front Neurosci 2024; 18:1421675. [PMID: 39005845 PMCID: PMC11243705 DOI: 10.3389/fnins.2024.1421675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- SciLore LLC, Kingsbury, TX, United States
- Instiute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jenica Clarisse Sy
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| | - Christian Deo Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin Bridgette Castro
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lyoneil James Dimaapi
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Beatrice Gabrielle Panlaqui
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Wenzel Perian
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Justine Yu
- Institute for Dementia Care Asia, Quezon City, Philippines
| | - John Mark Velasco
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Anna Gibson
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| |
Collapse
|
2
|
Lorenzini L, Zanella L, Sannia M, Baldassarro VA, Moretti M, Cescatti M, Quadalti C, Baldi S, Bartolucci G, Di Gloria L, Ramazzotti M, Clavenzani P, Costanzini A, De Giorgio R, Amedei A, Calzà L, Giardino L. Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer's-like clinical phenotype. Alzheimers Res Ther 2024; 16:116. [PMID: 38773640 PMCID: PMC11110243 DOI: 10.1186/s13195-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.
Collapse
Affiliation(s)
- Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Lorenzo Zanella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | | | - Marzia Moretti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy.
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
De Sousa Rodrigues ME, Bolen ML, Blackmer-Raynolds L, Schwartz N, Chang J, Tansey MG, Sampson TR. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582516. [PMID: 38464096 PMCID: PMC10925304 DOI: 10.1101/2024.02.28.582516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
Collapse
Affiliation(s)
| | - MacKenzie L. Bolen
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Noah Schwartz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | |
Collapse
|
4
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
5
|
Ramsden CE, Zamora D, Horowitz MS, Jahanipour J, Calzada E, Li X, Keyes GS, Murray HC, Curtis MA, Faull RM, Sedlock A, Maric D. ApoER2-Dab1 disruption as the origin of pTau-associated neurodegeneration in sporadic Alzheimer's disease. Acta Neuropathol Commun 2023; 11:197. [PMID: 38093390 PMCID: PMC10720169 DOI: 10.1186/s40478-023-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA.
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Mark S Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Calzada
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Richard M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Haferkamp U, Hartmann C, Abid CL, Brachner A, Höchner A, Gerhartl A, Harwardt B, Leckzik S, Leu J, Metzger M, Nastainczyk-Wulf M, Neuhaus W, Oerter S, Pless O, Rujescu D, Jung M, Appelt-Menzel A. Human isogenic cells of the neurovascular unit exert transcriptomic cell type-specific effects on a blood-brain barrier in vitro model of late-onset Alzheimer disease. Fluids Barriers CNS 2023; 20:78. [PMID: 37907966 PMCID: PMC10617216 DOI: 10.1186/s12987-023-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The function of the blood-brain barrier (BBB) is impaired in late-onset Alzheimer disease (LOAD), but the associated molecular mechanisms, particularly with respect to the high-risk APOE4/4 genotype, are not well understood. For this purpose, we developed a multicellular isogenic model of the neurovascular unit (NVU) based on human induced pluripotent stem cells. METHODS The human NVU was modeled in vitro using isogenic co-cultures of astrocytes, brain capillary endothelial-like cells (BCECs), microglia-like cells, neural stem cells (NSCs), and pericytes. Physiological and pathophysiological properties were investigated as well as the influence of each single cell type on the characteristics and function of BCECs. The barriers established by BCECs were analyzed for specific gene transcription using high-throughput quantitative PCR. RESULTS Co-cultures were found to tighten the barrier of BCECs and alter its transcriptomic profile under both healthy and disease conditions. In vitro differentiation of brain cell types that constitute the NVU was not affected by the LOAD background. The supportive effect of NSCs on the barrier established by BCECs was diminished under LOAD conditions. Transcriptomes of LOAD BCECs were modulated by different brain cell types. NSCs were found to have the strongest effect on BCEC gene regulation and maintenance of the BBB. Co-cultures showed cell type-specific functional contributions to BBB integrity under healthy and LOAD conditions. CONCLUSIONS Cell type-dependent transcriptional effects on LOAD BCECs were identified. Our study suggests that different brain cell types of the NVU have unique roles in maintaining barrier integrity that vary under healthy and LOAD conditions. .
Collapse
Affiliation(s)
- Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Carla Hartmann
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Andreas Brachner
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Alevtina Höchner
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
| | - Anna Gerhartl
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Bernadette Harwardt
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Selin Leckzik
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jennifer Leu
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | | | - Winfried Neuhaus
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Sabrina Oerter
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, 1090, Austria
| | - Matthias Jung
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany.
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany.
| |
Collapse
|
7
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
9
|
Cucos CA, Milanesi E, Dobre M, Musat IA, Manda G, Cuadrado A. Altered Blood and Brain Expression of Inflammation and Redox Genes in Alzheimer's Disease, Common to APP V717I × TAU P301L Mice and Patients. Int J Mol Sci 2022; 23:ijms23105799. [PMID: 35628609 PMCID: PMC9144576 DOI: 10.3390/ijms23105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Despite intensive research, the pathophysiology of Alzheimer’s disease (AD) is still not fully understood, and currently there are no effective treatments. Therefore, there is an unmet need for reliable biomarkers and animal models of AD to develop innovative therapeutic strategies addressing early pathologic events such as neuroinflammation and redox disturbances. The study aims to identify inflammatory and redox dysregulations in the context of AD-specific neuronal cell death and DNA damage, using the APPV717I× TAUP301L (AT) mouse model of AD. The expression of 84 inflammatory and 84 redox genes in the hippocampus and peripheral blood of double transgenic AT mice was evaluated against age-matched controls. A distinctive gene expression profile in the hippocampus and the blood of AT mice was identified, addressing DNA damage, apoptosis and thrombosis, complemented by inflammatory factors and receptors, along with ROS producers and antioxidants. Gene expression dysregulations that are common to AT mice and AD patients guided the final selection of candidate biomarkers. The identified inflammation and redox genes, common to AD patients and AT mice, might be valuable candidate biomarkers for preclinical drug development that could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Catalina Anca Cucos
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Ioana Andreea Musat
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Gina Manda
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Correspondence: (G.M.); (A.C.)
| | - Antonio Cuadrado
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Correspondence: (G.M.); (A.C.)
| |
Collapse
|
10
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
12
|
Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, Chai YH, Gunasekaran B, Salvamani S. The Potential Benefits of Nanotechnology in Treating Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5550938. [PMID: 34285915 PMCID: PMC8275379 DOI: 10.1155/2021/5550938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer's disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer's disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer's disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer's disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer's disease as well as its challenges.
Collapse
Affiliation(s)
- Tan Sook Ling
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shanthini Chandrasegaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Low Zhi Xuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Tong Li Suan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Elaine Elaine
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Durrgashini Visva Nathan
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yam Hok Chai
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|