1
|
Escudero-Cabarcas J, Pineda-Alhucema W, Martinez-Banfi M, Acosta-López JE, Cervantes-Henriquez ML, Mejía-Segura E, Jiménez-Figueroa G, Sánchez-Barros C, Puentes-Rozo PJ, Noguera-Machacón LM, Ahmad M, de la Hoz M, Vélez JI, Arcos-Burgos M, Pineda DA, Sánchez M. Theory of Mind in Huntington's Disease: A Systematic Review of 20 Years of Research. J Huntingtons Dis 2024; 13:15-31. [PMID: 38517797 DOI: 10.3233/jhd-230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background People with Huntington's disease (HD) exhibit neurocognitive alterations throughout the disease, including deficits in social cognitive processes such as Theory of Mind (ToM). Objective The aim is to identify methodologies and ToM instruments employed in HD, alongside relevant findings, within the scientific literature of the past two decades. Methods We conducted a comprehensive search for relevant papers in the SCOPUS, PubMed, APA-PsyArticles, Web of Science, Redalyc, and SciELO databases. In the selection process, we specifically focused on studies that included individuals with a confirmed genetic status of HD and investigated ToM functioning in patients with and without motor symptoms. The systematic review followed the PRISMA protocol. Results A total of 27 papers were selected for this systematic review, covering the period from 2003 to 2023. The findings consistently indicate that ToM is globally affected in patients with manifest motor symptoms. In individuals without motor symptoms, impairments are focused on the affective dimensions of ToM. Conclusions Based on our analysis, affective ToM could be considered a potential biomarker for HD. Therefore, it is recommended that ToM assessment be included as part of neuropsychological evaluation protocols in clinical settings. Suchinclusion could aid in the identification of early stages of the disease and provide new opportunities for treatment, particularly with emerging drugs like antisense oligomers. The Prospero registration number for this review is CRD42020209769.
Collapse
Affiliation(s)
- Johana Escudero-Cabarcas
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Wilmar Pineda-Alhucema
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha Martinez-Banfi
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Johan E Acosta-López
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha L Cervantes-Henriquez
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Elsy Mejía-Segura
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Giomar Jiménez-Figueroa
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Cristian Sánchez-Barros
- Hospital Juaneda Miramar Departamento de Neurofisiología Clínica Palma de Mallorca, Islas Baleares, España
| | - Pedro J Puentes-Rozo
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | | | - Mostapha Ahmad
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud Barranquilla, Colombia
| | - Moisés de la Hoz
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud Barranquilla, Colombia
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - David A Pineda
- Grupo de investigación Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín, Colombia
| | - Manuel Sánchez
- Centro de Inv. e Innovación en Ciencias Sociales, Facultad de ciencias jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| |
Collapse
|
2
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
4
|
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|