1
|
Diwan Z, Kang J, Tsztoo E, Siekmann AF. Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues. Angiogenesis 2024; 28:5. [PMID: 39656297 PMCID: PMC11632009 DOI: 10.1007/s10456-024-09955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/20/2024] [Indexed: 12/13/2024]
Abstract
Hemodynamic cues are thought to control blood vessel hierarchy through a shear stress set point, where flow increases lead to blood vessel diameter expansion, while decreases in blood flow cause blood vessel narrowing. Aberrations in blood vessel diameter control can cause congenital arteriovenous malformations (AVMs). We show in zebrafish embryos that while arteries behave according to the shear stress set point model, veins do not. This behavior is dependent on distinct arterial and venous endothelial cell (EC) shapes and sizes. We show that arterial ECs enlarge more strongly when experiencing higher flow, as compared to vein cells. Through the generation of chimeric embryos, we discover that this behavior of vein cells depends on the bone morphogenetic protein (BMP) pathway components Endoglin and Alk1. Endoglin (eng) or alk1 (acvrl1) mutant vein cells enlarge when in normal hemodynamic environments, while we do not observe a phenotype in either acvrl1 or eng mutant ECs in arteries. We further show that an increase in vein diameters initiates AVMs in eng mutants, secondarily leading to higher flow to arteries. These enlarge in response to higher flow through increasing arterial EC sizes, fueling the AVM. This study thus reveals a mechanism through which BMP signaling limits vein EC size increases in response to flow and provides a framework for our understanding of how a small number of mutant vein cells via flow-mediated secondary effects on wildtype arterial ECs can precipitate larger AVMs in disease conditions, such as hereditary hemorrhagic telangiectasia (HHT).
Collapse
Affiliation(s)
- Zeenat Diwan
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Jia Kang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tsztoo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Arndt F Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Li J, Weng H, Liu S, Li F, Xu K, Wen S, Chen X, Li C, Nie Y, Liao B, Wu J, Kantawong F, Xie X, Yu F, Li G. Embryonic exposure of polystyrene nanoplastics affects cardiac development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167406. [PMID: 37769743 DOI: 10.1016/j.scitotenv.2023.167406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Micro- and nanoplastics have recently been detected in human blood and placentas, indicating inevitable embryonic exposure to these particles. However, their influence on human embryogenesis and the underlying mechanisms are still unknown. In this study, the effects of polystyrene nanoplastics (PS-NPs) exposure on cardiac differentiation of human embryonic stem cells (hESCs) were evaluated. Uptake of PS-NPs not only caused cellular injury, but also regulated cardiac-related pathways as revealed by RNA-sequencing. Consequently, the efficiency of cardiomyocyte differentiation from hESCs was compromised, leading to immature of cardiomyocytes and smaller cardiac organoids with impaired contractility. Mechanistically, PS-NPs promoted mitochondrial oxidative stress, activated P38/Erk MAPK signaling pathway, blocked autophagy flux, and eventually reduced the pluripotency of hESCs. Consistently, in vivo exposure of PS-NPs from cleavage to gastrula period of zebrafish embryo led to reduced cardiac contraction and blood flow. Collectively, this study suggests that PS-NPs is a risk factor for fetal health, especially for heart development.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Fan Li
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Shan Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xi Chen
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Nie
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Liao
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Xiang Xie
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Röss H, Aaldijk D, Vladymyrov M, Odriozola A, Djonov V. Transluminal Pillars-Their Origin and Role in the Remodelling of the Zebrafish Caudal Vein Plexus. Int J Mol Sci 2023; 24:16703. [PMID: 38069025 PMCID: PMC10706262 DOI: 10.3390/ijms242316703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Intussusceptive pillars, regarded as a hallmark of intussusceptive angiogenesis, have been described in developing vasculature of many organs and organisms. The aim of this study was to resolve the question about pillar formation and their further maturation employing zebrafish caudal vein plexus (CVP). The CVP development was monitored by in vivo confocal microscopy in high spatio-temporal resolution using the transgenic zebrafish model Fli1a:eGPF//Gata1:dsRed. We tracked back the formation of pillars (diameter ≤ 4 µm) and intercapillary meshes (diameter > 4 µm) and analysed their morphology and behaviour. Transluminal pillars in the CVP arose via a combination of sprouting, lumen expansion, and/or the creation of intraluminal folds, and those mechanisms were not associated directly with blood flow. The follow-up of pillars indicated that one-third of them disappeared between 28 and 48 h post fertilisation (hpf), and of the remaining ones, only 1/17 changed their cross-section area by >50%. The majority of the bigger meshes (39/62) increased their cross-section area by >50%. Plexus simplification and the establishment of hierarchy were dominated by the dynamics of intercapillary meshes, which formed mainly via sprouting angiogenesis. These meshes were observed to grow, reshape, and merge with each other. Our observations suggested an alternative view on intussusceptive angiogenesis in the CVP.
Collapse
Affiliation(s)
- Helena Röss
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | - Dea Aaldijk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | | | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| |
Collapse
|
4
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
5
|
Li Y, Chen L, Li Y, Yang C, Gui B, Li Y, Liao L, Zhu Z, Huang R, Wang Y. Krüppel-like factor 2a (KLF2A) suppresses GCRV replication by upregulating serpinc1 expression in Ctenopharyngodon idellus kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1118-1124. [PMID: 36400369 DOI: 10.1016/j.fsi.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Krüppel-like factor 2a (KLF2A), a transcription factor of the krüppel-like family, is involved in regulating the immune molecules and is associated with viral infection. However, the function of KLF2A during viral infections in fish remains unclear. In this study, grass carp (Ctenopharyngodon idellus) was used to predict the target genes regulated by KLF2A. The results showed that the candidate target genes included four members of the serpin gene family (serpinb1l2, serpinc1, serpinh1a, and serpinh1b). Dual-luciferase experiments showed that klf2a positively regulates serpinc1 expression. Dose-dependent klf2a overexpression in C. idellus kidney (CIK) cells significantly upregulated the expression of serpinc1. Overexpressing klf2a or serpinc1 in CIK cells activated interferon responses and suppressed grass carp reovirus (GCRV) replication. Klf2a and serpinc1 co-expression inhibited GCRV replication. These results show that klf2a upregulates serpinc1 mRNA expression, promotes type 1 interferon responses, and suppresses GCRV infection. This study provides insights into the regulatory role and biological functions of KLF2A in host-virus interactions in fish.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bin Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Hariom SK, Nelson EJR. Effects of short-term hypergravity on hematopoiesis and vasculogenesis in embryonic zebrafish. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:21-29. [PMID: 35940686 DOI: 10.1016/j.lssr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microgravity and hypergravity-induced changes affect both molecular and organismal responses as demonstrated in various animal models. In addition to its inherent advantages, zebrafish have been shown to be incredibly resilient to altered gravity conditions. To understand the effects of altered gravity on animal physiology, especially the cardiovascular system, we used 2 h centrifugations to simulate short-term hypergravity and investigated its effects on zebrafish development. Morphological and in situ hybridization observations show a comparable overall development in both control and treated embryos. Spatiotemporal analysis revealed varied gene expression patterns across different developmental times. Genes driving primitive hematopoiesis (tal1, gata1) and vascular specificity (vegf, etv2) displayed an early onset of expression following hypergravity exposure. Upregulated expression of hematopoiesis-linked genes, such as runx1, cmyb, nos, and pdgf family demonstrate short-term hypergravity to be a factor inducing definitive hematopoiesis through a combinatorial mechanism. We speculate that these short-term hypergravity-induced physiological changes in the developing zebrafish embryos constitute a rescue mechanism to regain homeostasis.
Collapse
Affiliation(s)
- Senthil Kumar Hariom
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India
| | - Everette Jacob Remington Nelson
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India.
| |
Collapse
|
7
|
Fu S, Tan R, Feng Y, Yu P, Mo Y, Xiao W, Wang S, Zhang J. N-methyl-N-nitrosourea induces zebrafish anomalous angiogenesis through Wnt/β-catenin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113674. [PMID: 35623148 DOI: 10.1016/j.ecoenv.2022.113674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
N-methyl-N-nitrosourea (MNU) is a prevalent environmental carcinogen, which leads to tumors in various organs in animal models, while the mechanisms involved were still not fully understood. It is well known that anomalous angiogenesis is a key step in tumorigenesis and progression. In this study, we found that MNU induced abnormal angiogenesis which was accompanied by upregulation of rspo1, p53 and vegfaa in zebrafish embryos. Moreover, it revealed that MNU-induced ectopic sprouting of blood vessels was significantly reduced in rspo1-knockdown but not p53-knockdown embryos, indicating that rspo1 was necessary for MNU-induced abnormal angiogenesis. Additionally, pharmaceutical activation or inhibition of Wnt/β-catenin signaling pathway using (2'Z,3'E)- 6-bromoindirubin-3'-oxime or CCT036477 significantly increased or inhibited the pro-angiogenic effect of MNU on developing zebrafish embryos, which was confirmed by the effect of proliferation and migration in MNU-treated bEnd.3 cells. These data together indicated that rspo1/Wnt/β-catenin/vegfaa axis is involved in the modulation of MNU-induced anomalous angiogenesis.
Collapse
Affiliation(s)
- Saifang Fu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Rongbang Tan
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
8
|
Li JT, Zhang YD, Song XR, Li RJ, Yang WL, Tian M, Zhang SF, Cao GH, Song LL, Chen YM, Liu CH. The mechanism and effects of remdesivir-induced developmental toxicity in zebrafish: Blood flow dysfunction and behavioral alterations. J Appl Toxicol 2022; 42:1688-1700. [PMID: 35560222 DOI: 10.1002/jat.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 μM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 μM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, eighty differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.
Collapse
Affiliation(s)
- Ji-Tong Li
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Yao-Dong Zhang
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiao-Rui Song
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui-Jing Li
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei-Li Yang
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ming Tian
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Shu-Feng Zhang
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Guang-Hai Cao
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Lu-Lu Song
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Cui-Hua Liu
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| |
Collapse
|
9
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
10
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
11
|
The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 2021; 17:e1009690. [PMID: 34319989 PMCID: PMC8318303 DOI: 10.1371/journal.pgen.1009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement. Vascular remodeling is critical for vascular physiology and pathology. The primitive vascular plexus formed by angiogenesis, subsequently undergoes extensive vascular remodeling to establish a functionally and hierarchically branched network of blood vessels. Vascular remodeling mainly consists of vessel pruning and fusion. Endothelial cell rearrangement plays an essential role in vessel pruning, which involves endothelial cell migration and polarity. Dysfunction of flow-induced vascular remodeling will cause arteriovenous malformation and impair reperfusion of ischemia stroke. In this study, we show that the large-diameter vessel of the caudal vein is pruned from ventral capillaries of the caudal vein plexus in zebrafish embryos. With this model, we observe a growing difference in blood flow velocity between two branches in vessel pruning. We identify that the klf6a-tagln2 axis regulates CV pruning by promoting endothelial cell rearrangement and junction remodeling. Our results suggest that the caudal vein formation is an ideal model for screening the potential genes involved in vascular remodeling-related disease.
Collapse
|
12
|
Xie X, Lei D, Zhang Q, Wang Y, Wen L, Ye Z, Ud Din A, Jia D, Apicella A, Wang G. Effect of simulated microgravity induced PI3K-nos2b signalling on zebrafish cardiovascular plexus network formation. J Biomech 2019; 87:83-92. [PMID: 30850176 DOI: 10.1016/j.jbiomech.2019.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Local abnormal angiogenesis and cardiovascular system reorganization have been observed in embryos exposed to a simulated microgravity (SM) environment. In this study, changes in key molecular signals and pathways in cardiovascular development have been investigated under microgravity conditions. In particular, the caudal vein plexus (CVP) network, formed by sprouting angiogenesis has been chosen. Zebrafish embryos were exposed to SM using a ground-based microgravity bioreactor for 24 and 36 h. The SM was observed to have no effect on the zebrafish length, tail width and incubation time whereas it was observed to significantly reduce the heart rate frequency and to promote abnormal development of the CVP network in the embryos. Nitric oxide (NO) content demonstrated that the total proteins in zebrafish embryos were significantly higher in SM than in the control group grown under normal conditions. It was then preliminarily determined how NO signals were involved in SM regulated zebrafish CVP network formation. nos2b MO was injected and CVP network evolution was observed in 36 h post fertilization (hpf) under SM condition. The results showed that the CVP network formation was considerably decreased in the nos2b MO treated group. However, this inhibition of the CVP network development was not observed in control MO group, indicating that nos2b is involved in the SM-regulated vascular development process in zebrafish. Moreover, specific phosphoinositide 3-kinase (PI3K) inhibitors such as LY294002 were also tested on zebrafish embryos under SM condition. This treatment significantly inhibited the formation of zebrafish CVP network. Furthermore, overexpression of nos2b partly rescued the LY294002-caused CVP network failure. Therefore, it can be concluded that SM affects zebrafish CVP network remodeling by enhancing angiogenesis. Additionally, the PI3K-nos2b signaling pathway is involved in this process.
Collapse
Affiliation(s)
- Xiang Xie
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Daoxi Lei
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lin Wen
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ahmad Ud Din
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Antonio Apicella
- Advanced Materials Lab, Polytechnic and Base Science School of University of Campania, San Lorenzo, 81031, Italy
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|