1
|
Zhang LS, Chen QC, Zong HT, Xia Q. Exosome miRNA-203 promotes M1 macrophage polarization and inhibits prostate cancer tumor progression. Mol Cell Biochem 2024; 479:2459-2470. [PMID: 37812348 DOI: 10.1007/s11010-023-04854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Prostate cancer (PCa) is a prevalent malignant neoplasm affecting the male reproductive system globally. However, the diagnostic and therapeutic approaches fall short of meeting the demands posed by PCa. Poor expression of miRNA-203 (miR-203) within PCa tissues and cells implies its potential utility as a diagnostic indicator for PCa. Exosomes (Exo), membranous vesicles released by various cells, are rich reservoirs of miRNAs. However, the presence of miR-203 presents within Exo derived from PCa cells remains unclarified. In this study, Exo was isolated from urine specimens collected from clinical PCa patients and LNCaP cells to detect miR-203 expression. Meanwhile, the impact of overexpressed miR-203 on M0 macrophages (mø) was analyzed. Subsequently, alterations in the proliferative, migratory, and invasive capacities of LNCaP cells were examined within a co-culture system featuring elevated miR-203 levels in both macrophages and LNCaP cells. Furthermore, the repercussions of miR-203 upregulation or inhibition were explored in a murine PCa tumor model. The results revealed that Exo manifested a circular or elliptical morphology, encapsulating a phospholipid bilayer approximately 100 nm in diameter. Notably, Exo readily infiltrated, with both Exo and miR-203-overexpressing Exo prompting macrophage polarization toward the M1 subtype. In the co-culture system, miR-203 exhibited pronounced suppression of LNCaP cell proliferation, migration, and invasion, while concurrently fostering apoptosis as compared with the LNCaP group (Control). In vivo experiments further disclosed that miR-203 greatly inhibited the growth of PCa tumors in nude mice. Markedly heightened expression of M1 macrophage markers such as IL-1β, IL-6, IL-12, CXCL9, and CXCL10 was observed within the tumor microenvironment following miR-203 intervention, as opposed to the model group. However, the introduction of miR-203 antagomir led to a reversal in tumor growth trends. This investigation indicates the presence of miR-203 within the urine of PCa patients and Exo originating from cells, and that miR-203 exerted antitumor effect by facilitating M1 macrophage polarization. Our study furnishes valuable insights into the potential applicability of miR-203 as a diagnostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Lian-Sheng Zhang
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China.
| | - Qi-Chao Chen
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Hong-Tao Zong
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China
| | - Qiang Xia
- Department of Urology, Soochow University Affiliated Wuxi Ninth Hospital, No. 999, Liangxi Road, Binhu District, Wuxi, 214000, Jiangsu Province, China.
| |
Collapse
|
2
|
Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2024; 16:1377. [PMID: 38611055 PMCID: PMC11010957 DOI: 10.3390/cancers16071377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.
Collapse
|
3
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Pan L, Liu W, Zhao H, Chen B, Yue X. MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technol Health Care 2023; 31:2251-2265. [PMID: 37545272 DOI: 10.3233/thc-230217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.
Collapse
|
7
|
Yunusova N, Dzhugashvili E, Yalovaya A, Kolomiets L, Shefer A, Grigor’eva A, Tupikin A, Kondakova I, Tamkovich S. Comparative Analysis of Tumor-Associated microRNAs and Tetraspanines from Exosomes of Plasma and Ascitic Fluids of Ovarian Cancer Patients. Int J Mol Sci 2022; 24:ijms24010464. [PMID: 36613908 PMCID: PMC9820379 DOI: 10.3390/ijms24010464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. In the early phase of OC detection, the current treatment and diagnostic methods are not efficient and sensitive enough. Therefore, it is crucial to explore the mechanisms of OC metastasis and discover valuable factors for early diagnosis of female cancers and novel therapeutic strategies for metastasis. Exosomes are known to be involved in the development, migration, and invasion of cancer cells, and their cargo could be useful for the non-invasive biopsy development. CD151- and Tspan8-positive exosomes are known to support the degradation of the extracellular matrix, and are involved in stroma remodeling, angiogenesis and cell motility, as well as the association of miR-24 and miR-101 with these processes. The objective of this study was to explore the relationship of these components of exosomal cargo, in patients with OC, to clarify the clinical significance of these markers in liquid biopsies. The levels of tetraspanins Tspan8+ and CD151+ exosomes were significantly higher in plasma exosomes of OC patients compared with healthy females (HFs). The relative levels of miR-24 and miR-101 in plasma exosomes of HFs were significantly higher than in plasma exosomes of OC patients, while the levels of these microRNAs in exosomes from plasma and ascites of ill females showed no difference. Our study revealed a strong direct correlation between the change in the ascites exosomes CD151+Tspan8+ subpopulation level and the expression levels of the ascites (R = 0.81, p < 0.05) and plasma exosomal miR-24 (R = 0.74, p < 0.05) in OC patients, which confirms the assumption that exosomal cargo act synergistically to increase cellular motility, affecting cellular processes and signaling. Bioinformatics analysis confirmed the involvement of CD151 and Tspan8 tetraspanins and genes controlled by miR-24-3p and miR-101 in signaling pathways, which are crucial for carcinogenesis, demonstrating that these tetraspanins and microRNAs are potential biomarkers for OC screening, and predictors of poor clinicopathological behavior in tumors.
Collapse
Affiliation(s)
- Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Larisa Kolomiets
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
8
|
Shefer A, Yalovaya A, Tamkovich S. Exosomes in Breast Cancer: Involvement in Tumor Dissemination and Prospects for Liquid Biopsy. Int J Mol Sci 2022; 23:8845. [PMID: 36012109 PMCID: PMC9408748 DOI: 10.3390/ijms23168845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
In women, breast cancer (BC) is the most commonly diagnosed cancer (24.5%) and the leading cause of cancer death (15.5%). Understanding how this heterogeneous disease develops and the confirm mechanisms behind tumor progression is of utmost importance. Exosomes are long-range message vesicles that mediate communication between cells in physiological conditions but also in pathology, such as breast cancer. In recent years, there has been an exponential rise in the scientific studies reporting the change in morphology and cargo of tumor-derived exosomes. Due to the transfer of biologically active molecules, such as RNA (microRNA, long non-coding RNA, mRNA, etc.) and proteins (transcription factors, enzymes, etc.) into recipient cells, these lipid bilayer 30-150 nm vesicles activate numerous signaling pathways that promote tumor development. In this review, we attempt to shed light on exosomes' involvement in breast cancer pathogenesis (including epithelial-to-mesenchymal transition (EMT), tumor cell proliferation and motility, metastatic processes, angiogenesis stimulation, and immune system repression). Moreover, the potential use of exosomes as promising diagnostic biomarkers for liquid biopsy of breast cancer is also discussed.
Collapse
Affiliation(s)
- Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Yang L, Huang S, Zhang Z, Liu Z, Zhang L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int J Mol Sci 2022; 23:ijms23115927. [PMID: 35682606 PMCID: PMC9180222 DOI: 10.3390/ijms23115927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Red blood cell-derived extracellular vesicles (RBCEVs) are vesicles naturally produced by red blood cells and play multiple roles such as acting as cell-to-cell communication messengers in both normal physiological and diseased states. RBCEVs are highly promising delivery vehicles for therapeutic agents such as biomolecules and nucleic acids as they are easy to source, safe, and versatile. RBCEVs autonomously target the liver and pass the blood-brain barrier into the brain, which is highly valuable for the treatment of liver and brain diseases. RBCEVs can be modified by various functional units, including various functional molecules and nanoparticles, to improve their active targeting capabilities for tumors or other sites. Moreover, the RBCEV level is significantly shifted in many diseased states; hence, they can also serve as important biomarkers for disease diagnoses. It is clear that RBCEVs have considerable potential in multiple medical applications. In this review, we briefly introduce the biological roles of RBCEVs, presented interesting advances in RBCEV applications, and discuss several challenges that need to be addressed for their clinical translation.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Shiqi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhenmi Liu
- Med-X Center for Materials, West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
10
|
Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics (Basel) 2022; 12:diagnostics12040854. [PMID: 35453902 PMCID: PMC9027845 DOI: 10.3390/diagnostics12040854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
It is known that circulating DNA (cirDNA) is protected from nuclease activity by proteins that form macromolecular complexes with DNA. In addition, it was previously shown that cirDNA can bind to the outer surface of exosomes. NTA analysis and real-time PCR show that exosomes from healthy females (HF) or breast cancer patients (BCP) plasma contain less than 1.4 × 10−8 pg of DNA. Thus, only a minor part of cirDNA is attached to the outer side of the exosome as part of the vesicle crown: the share of exosomal DNA does not exceed 0.025% HF plasma DNA and 0.004% BCP plasma DNA. Treatment of plasma exosomes with DNase I with subsequent dot immunoassay reveals that H2a, H2b, and H3 histones are not part of the exosomal membrane, but are part of the cirDNA–protein macromolecular complex associated with the surface of the exosome either through interaction with DNA-binding proteins or with histone-binding proteins. Using bioinformatics approaches after identification by MALDI-TOF mass spectrometry, 16 exosomal DNA-binding proteins were identified. It was shown that four proteins—AIFM1, IGHM, CHD5, and KCNIP3—are candidates for DNA binding on the outer membrane of exosomes; the crown of exosomes may include five DNA-binding proteins: H2a, H2b, H3, IGHM, and ALB. Of note, AIFM1, IGHM, and CHD5 proteins are found only in HF plasma exosomes; KCNIP3 protein is identified only in BCP plasma exosomes; and H2a, H2b, H3, and ALB are revealed in all samples of plasma exosomes. Two histone-binding proteins, CHD5 and KDM6B, have been found in exosomes from HF plasma. The data obtained indicate that cirDNA preferentially binds to the outer membrane of exosomes by association with DNA-binding proteins.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
11
|
Yi Y, Wu M, Zeng H, Hu W, Zhao C, Xiong M, Lv W, Deng P, Zhang Q, Wu Y. Tumor-Derived Exosomal Non-Coding RNAs: The Emerging Mechanisms and Potential Clinical Applications in Breast Cancer. Front Oncol 2021; 11:738945. [PMID: 34707990 PMCID: PMC8544822 DOI: 10.3389/fonc.2021.738945] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2021; 1876:188624. [PMID: 34487817 DOI: 10.1016/j.bbcan.2021.188624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in extracellular vesicle biology have uncovered a substantial role in maintaining cell homeostasis in health and disease conditions by mediating intercellular communication, thus catching the scientific community's attention worldwide. Extracellular microvesicles, some called exosomes, functionally transfer biomolecules such as proteins and non-coding RNAs from one cell to another, influencing the local environment's biology. Although numerous advancements have been made in treating cancer patients with immune therapy, controlling the disease remains a challenge in the clinic due to tumor-driven interference with the immune response and inability of immune cells to clear cancer cells from the body. The present review article discusses the recent findings and knowledge gaps related to the role of exosomes derived from tumors and the tumor microenvironment cells in tumor escape from immunosurveillance. Further, we highlight examples where exosomal non-coding RNAs influence immune cells' response within the tumor microenvironment and favor tumor growth and progression. Therefore, exosomes can be used as a therapeutic target for the treatment of human cancers.
Collapse
|
13
|
Diomaiuto E, Principe V, De Luca A, Laperuta F, Alterisio C, Di Loria A. Exosomes in Dogs and Cats: An Innovative Approach to Neoplastic and Non-Neoplastic Diseases. Pharmaceuticals (Basel) 2021; 14:ph14080766. [PMID: 34451863 PMCID: PMC8400600 DOI: 10.3390/ph14080766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Exosomes are extracellular vesicles with a diameter between 40 and 120 nm, which are derived from all types of cells and released into all biological fluids, such as blood plasma, serum, urine, breast milk, colostrum, and more. They contain proteins, nucleic acids (mRNA, miRNA, other non-coding RNA, and DNA), and lipids. Exosomes represent a potentially accurate footprint of the miRNA profile of the parental cell and can therefore be proposed as potential and sensitive biomarkers, both in diagnosing and monitoring a variety of diseases in humans and animals. Liquid biopsy offers itself as a non-invasive or minimally invasive, pain-free, time-saving alternative to conventional tissue biopsy. Exosomes in both human and veterinary medicine find their major application in neoplastic diseases, but applications in the field of veterinary cardiology, nephrology, reproduction, parasitology, and regenerative medicine are currently being explored. Exosomes can therefore be used as diagnostic, prognostic, and, in some cases, therapeutic tools for several conditions. The aim of this review was to assess the current applications of exosomes in veterinary medicine, particularly in dog and cat patients.
Collapse
|
14
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
15
|
Tutanov OS, Proskura KV, Grigor’eva AE, Tsentalovich YP, Tamkovich SN. Identification of Tumor Dissemination Facilitating Proteins in Exosomes Associated with Blood Cells of Breast Cancer Patients. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Tutanov O, Proskura K, Kamyshinsky R, Shtam T, Tsentalovich Y, Tamkovich S. Proteomic Profiling of Plasma and Total Blood Exosomes in Breast Cancer: A Potential Role in Tumor Progression, Diagnosis, and Prognosis. Front Oncol 2020. [DOI: 10.3389/fonc.2020.580891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Konoshenko M, Sagaradze G, Orlova E, Shtam T, Proskura K, Kamyshinsky R, Yunusova N, Alexandrova A, Efimenko A, Tamkovich S. Total Blood Exosomes in Breast Cancer: Potential Role in Crucial Steps of Tumorigenesis. Int J Mol Sci 2020; 21:E7341. [PMID: 33027894 PMCID: PMC7582945 DOI: 10.3390/ijms21197341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are crucial players in cell-to-cell communication and are involved in tumorigenesis. There are two fractions of blood circulating exosomes: free and cell-surface-associated. Here, we compared the effect of total blood exosomes (contain plasma exosomes and blood cell-surface-associated exosomes) and plasma exosomes from breast cancer patients (BCPs, n = 43) and healthy females (HFs, n = 35) on crucial steps of tumor progression. Exosomes were isolated by ultrafiltration, followed by ultracentrifugation, and characterized by cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis, and flow cytometry. Cryo-EM revealed a wider spectrum of exosome morphology with lipid bilayers and vesicular internal structures in the HF total blood in comparison with plasma. No differences in the morphology of both exosomes fractions were detected in BCP blood. The plasma exosomes and total blood exosomes of BCPs had different expression levels of tumor-associated miR-92a and miR-25-3p, induced angiogenesis and epithelial-to-mesenchymal transition (EMT), and increased the number of migrating pseudo-normal breast cells and the total migration path length of cancer cells. The multidirectional effects of HF total blood exosomes on tumor dissemination were revealed; they suppress the angiogenesis and total migration path length of MCF10A, but stimulate EMT and increase the number of migrating MCF10A and the total path length of SKBR3 cells. In addition, HF plasma exosomes enhance the metastasis-promoting properties of SKBR3 cells and stimulate angiogenesis. Both cell-free and blood cell-surface-associated exosomes are involved in the crucial stages of carcinogenesis: the initiation of EMT and the stimulation of proliferation, cell migration, and angiogenesis. Thus, for the estimation of the diagnostic/prognostic significance of circulating exosomes in the blood of cancer patients more correctly, the total blood exosomes, which consist of plasma exosomes and blood cell-surface-associated exosomes should be used.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
| | - Georgy Sagaradze
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Evgeniya Orlova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Ksenia Proskura
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre, “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Antonina Alexandrova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Anastasia Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Department of Molecular Biology and Biotechnology, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Syed SN, Brüne B. MicroRNAs as Emerging Regulators of Signaling in the Tumor Microenvironment. Cancers (Basel) 2020; 12:E911. [PMID: 32276464 PMCID: PMC7225969 DOI: 10.3390/cancers12040911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
| |
Collapse
|
19
|
Tutanov O, Orlova E, Proskura K, Grigor’eva A, Yunusova N, Tsentalovich Y, Alexandrova A, Tamkovich S. Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules 2020; 10:biom10040495. [PMID: 32218180 PMCID: PMC7226042 DOI: 10.3390/biom10040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They contribute to the metastatic progression of tumor cells through paracrine signalling. It has been recently discovered that blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. We evaluated the influence of protein cargoes from exosomes from plasma, and exosomes from the total blood of healthy females (HFs) and breast cancer patients (BCPs), on cell motility. We conducted a mass spectrometric analysis of exosomal contents isolated from samples using ultrafiltration and ultracentrifugation approaches and verified their nature using transmission electron microscopy, nanoparticle tracking analysis and flow cytometry. We observed that malignant neoplasm-associated proteins in exosomes from BCP total blood were detected more often than in plasma (66% vs. 59%). FunRich analysis to assess Gene Ontology (GO) enrichment revealed that proteins with catalytic activities, transporter functions and protein metabolism activities were increased in exosomes from BCP blood. Finally, GO analysis revealed that proteomic profiles of exosomes from HF total blood were enriched with proteins inhibiting cell migration and invasion, which explains the low stimulating activity of exosomes from HF total blood on SKBR-3 cancer cell migration velocity. This allows exosomes to act as intermediaries providing intercellular communications through horizontal transfer of RNA and functionally active proteins, potentially affecting the development of both primary neoplasms and distant metastases.
Collapse
Affiliation(s)
- Oleg Tutanov
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Evgeniya Orlova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Ksenia Proskura
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Mammology, Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Alina Grigor’eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Natalia Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634028 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Yuri Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, 630090 Novosibirsk, Russia;
| | - Antonina Alexandrova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Svetlana Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Molecular Biology and Biotechnology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
20
|
Ozawa PMM, Vieira E, Lemos DS, Souza ILM, Zanata SM, Pankievicz VC, Tuleski TR, Souza EM, Wowk PF, Urban CDA, Kuroda F, Lima RS, Almeida RC, Gradia DF, Cavalli IJ, Cavalli LR, Malheiros D, Ribeiro EMSF. Identification of miRNAs Enriched in Extracellular Vesicles Derived from Serum Samples of Breast Cancer Patients. Biomolecules 2020; 10:E150. [PMID: 31963351 PMCID: PMC7022833 DOI: 10.3390/biom10010150] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs derived from extracellular vesicles (EV-miRNAs) are circulating miRNAs considered as potential new diagnostic markers for cancer that can be easily detected in liquid biopsies. In this study, we performed RNA sequencing analysis as a screening strategy to identify EV-miRNAs derived from serum of clinically well-annotated breast cancer (BC) patients from the south of Brazil. EVs from three groups of samples (healthy controls (CT), luminal A (LA), and triple-negative (TNBC)) were isolated from serum using a precipitation method and analyzed by RNA-seq (screening phase). Subsequently, four EV-miRNAs (miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p) were selected to be quantified by quantitative real-time PCR (RT-qPCR) in individual samples (test phase). A panel composed of miR-142-5p, miR-320a, and miR-4433b-5p distinguished BC patients from CT with an area under the curve (AUC) of 0.8387 (93.33% sensitivity, 68.75% specificity). The combination of miR-142-5p and miR-320a distinguished LA patients from CT with an AUC of 0.9410 (100% sensitivity, 93.80% specificity). Interestingly, decreased expression of miR-142-5p and miR-150-5p were significantly associated with more advanced tumor grades (grade III), while the decreased expression of miR-142-5p and miR-320a was associated with a larger tumor size. These results provide insights into the potential application of EVs-miRNAs from serum as novel specific markers for early diagnosis of BC.
Collapse
Affiliation(s)
- Patricia M. M. Ozawa
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Evelyn Vieira
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Débora S. Lemos
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Ingrid L. Melo Souza
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil; (I.L.M.S.); (S.M.Z.)
| | - Silvio M. Zanata
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil; (I.L.M.S.); (S.M.Z.)
| | - Vânia C. Pankievicz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.C.P.); (T.R.T.); (E.M.S.)
| | - Thalita R. Tuleski
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.C.P.); (T.R.T.); (E.M.S.)
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.C.P.); (T.R.T.); (E.M.S.)
| | - Pryscilla F. Wowk
- Carlos Chagas Institute - Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Cícero de Andrade Urban
- Positivo University Medical School, Curitiba 81280-330, Brazil
- Nossa Senhora das Graças Hospital Breast Unit, Curitiba 80810-040, Brazil; (F.K.); (R.S.L.)
| | - Flavia Kuroda
- Nossa Senhora das Graças Hospital Breast Unit, Curitiba 80810-040, Brazil; (F.K.); (R.S.L.)
| | - Rubens S. Lima
- Nossa Senhora das Graças Hospital Breast Unit, Curitiba 80810-040, Brazil; (F.K.); (R.S.L.)
| | - Rodrigo C. Almeida
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, 2300 R Leiden, The Netherlands
| | - Daniela F. Gradia
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Iglenir J. Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Luciane R. Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Danielle Malheiros
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| | - Enilze M. S. F. Ribeiro
- Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (P.M.M.O.); (E.V.); (D.S.L.); (R.C.A.); (D.F.G.); (I.J.C.)
| |
Collapse
|
21
|
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain. Curr Stem Cell Res Ther 2019; 14:644-653. [PMID: 31512998 DOI: 10.2174/1574888x14666190912162504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common condition that seriously affects the quality of human life with
variable etiology and complicated symptoms; people who suffer from chronic pain may experience
anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal
anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and
cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top
priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for
the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit
multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they
have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by
MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we
summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance
the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will
develop from exosomes secreted by MSCs.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Kehan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|