1
|
Han L, Liu J, Shataer M, Wu C, Niyazi M. The relationship between long non-coding gene CASC21 polymorphisms and cervical cancer. Cancer Biol Ther 2024; 25:2322207. [PMID: 38465665 PMCID: PMC10936591 DOI: 10.1080/15384047.2024.2322207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND CASC21 was reported to be a hotspot gene in cervical cancer. The relationship between CASC21 genetic polymorphisms and cervical cancer has not been reported. Genetic factors influence the occurrence of cervical cancer. Thus, we explored the correlation between CASC21 polymorphisms and cervical cancer. METHODS A total of 973 participants within 494 cervical cancer cases and 479 healthy controls were recruited. Five single nucleotide polymorphisms (SNPs) in the CASC21 gene were genotyped using the Agena MassARRAY platform. Chi-squared test, logistic regression analysis, odds ratio (OR), multifactor dimensionality reduction (MDR), and 95% confidence interval (95%CI) were used for data analysis. RESULTS In the overall analysis, rs16902094 (p = .014, OR = 1.86, 95% CI = 1.12-3.08) and rs16902104 (p = .014, OR = 1.86, 95% CI = 1.12-3.09) had the risk-increasing correlation with the occurrence of cervical cancer. Stratification analysis showed that rs16902094 and rs16902104 were still associated with cervical cancer risk in the subgroups with age > 51, BMI < 24 kg/m2, smokers, and patients with cervical squamous cell carcinoma. MDR analysis displayed that rs16902094 (.49%) and rs16902104 (.52%) were the main influential attribution factor for cervical cancer risk. CONCLUSION Our finding firstly determined that two CASC21 SNPs (rs16902094, rs16902104) were associated with an increased risk of cervical cancer, which adds to our knowledge regarding the effect of CASC21 on cervical carcinogenesis.
Collapse
Affiliation(s)
- Lili Han
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumchi, Xinjiang, China
| | - Jing Liu
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumchi, Xinjiang, China
| | - Mireayi Shataer
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumchi, Xinjiang, China
| | - Chengyong Wu
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumchi, Xinjiang, China
| | - Mayinuer Niyazi
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumchi, Xinjiang, China
| |
Collapse
|
2
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024:S1359-6101(24)00079-0. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
3
|
Fang J, Shi C, Huang Q, Huang L, Wang X, Yan B. Development of the ARDS-derived gene panel for lung adenocarcinoma prognosis stratification and experiment validation of CCL20 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:3211-3224. [PMID: 38356310 DOI: 10.1002/tox.24161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by lung inflammation and high mortality rates. Lung cancer, specifically lung adenocarcinoma (LUAD), is a major cause of cancer-related deaths worldwide. Patients with LUAD, particularly those undergoing chemotherapy, are more likely to develop ARDS. ARDS inflicts major malfunctioning in the immune system. We suspected a certain shared pathogenic mechanism between these diseases. This study analyzed 503 LUAD patients from the TCGA-LUAD cohort as the training set, 85 LUAD cases from the GSE30219 cohort as the validation set, and 24 RNA-seq samples from ARDS mice model and control groups in the GSE2411 cohort. The differentially expressed genes (DEGs) of ARDS were analyzed using the limma package and screened by Cox and Lasso analysis. ssGSEA and xCell algorithms were utilized for immune landscaping. RT-qPCR analysis was used to determine the mRNA levels of key genes in both the LPS-induced ARDS model and human LUAD cell lines. We identified DEGs between ARDS and control groups, which were highly associated with cytokine production and leukocyte migration. A prognosis model for LUAD patients was developed based on the expressions of the key genes in the ARDS-derived DEGs, including FMO3, IL1R2, CCL20, CFTR, and GADD45G. A satisfactory efficacy was observed in both the training and validation cohorts. The model demonstrated increased effectiveness in predicting the intratumor immune profile and mutation status of LUAD. Moreover, we utilized LPS to induce the ARDS model, which resulted in elevated expressions of IL1R2 and CCL20. Additionally, CCL20 was upregulated in cancerous LUAD cell lines. We developed an ARDS-based model for stratifying LUAD prognosis. CCL20 was found to be elevated in both the ARDS model and LUAD, suggesting a shared underlying mechanism of these two diseases.
Collapse
Affiliation(s)
- Jingjing Fang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chaolu Shi
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qin Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lei Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinnian Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Biqing Yan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Zhang Y, Ma D, Gong Y, Wang F, Wu J, Wu C. IL1R2 is a Novel Prognostic Biomarker for Lung Adenocarcinoma. Curr Mol Med 2024; 24:620-629. [PMID: 37078353 DOI: 10.2174/1566524023666230420092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
AIMS The aim of this study is to figure out the role of IL1R2 in LUAD (lung adenocarcinoma). BACKGROUND IL1R2, a special member of IL-1 receptor family, binds to IL-1 and plays an important role in inhibiting IL-1 pathway, which seems to be involved in tumorigenesis. Emerging studies demonstrated higher IL1R2 expression levels in several malignancies. OBJECTIVE In the present study, we assessed the expression of IL1R2 in LUAD tissues with immunohistochemistry and explored various databases to determine whether it could be a potential prognostic biomarker and therapeutic target. METHODS The expression level of IL1R2 in lung adenocarcinoma was analyzed by Immunohistochemistry and UALCAN database. The correlation between IL1R2 expression and the patient prognosis was identified by Kaplan-Meier plotter. The correlation of IL1R2 expression with immune infiltrates was clarified by TIMER database. The protein-protein interaction network and gene functional enrichment analysis were constructed and performed by STRING and Metascape database. RESULTS Immunohistochemistry showed that the expression of IL1R2 was higher in tumor tissues of LUAD patients and that patients with lower IL1R2 level have a better prognosis than their counterparts. We validated our findings in several online databases and found that IL1R2 gene was also positively correlated with B cells and neutrophils and biomarkers of CD8+T cells and exhausted T cells. PPI network and gene enrichment analyses showed that expression of IL1R2 was also associated with complex functionspecific networks involving IL-1 signal, NF-KappaB transcription factors. CONCLUSION According to these findings, we demonstrated that IL1R2 was involved in the progression and prognosis of LUAD and the underlying mechanism needs further investigation.
Collapse
Affiliation(s)
- Ying Zhang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
- Departments of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, P.R. China
| | - Danyu Ma
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
| | - Yile Gong
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Fan Wang
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Jingping Wu
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| | - Chen Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, P.R. China
- Department of General Internal Medicine, People's hospital of Ziyang, Ankang, Shanxi, 725399, P.R. China
| |
Collapse
|
5
|
Kurtović M, Piteša N, Bartoniček N, Ozretić P, Musani V, Čonkaš J, Petrić T, King C, Sabol M. RNA-seq and ChIP-seq Identification of Unique and Overlapping Targets of GLI Transcription Factors in Melanoma Cell Lines. Cancers (Basel) 2022; 14:cancers14184540. [PMID: 36139698 PMCID: PMC9497141 DOI: 10.3390/cancers14184540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite significant progress in therapy, melanoma still has a rising incidence worldwide, and novel treatment strategies are needed. Recently, researchers have recognized the involvement of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and its consistent crosstalk with the MAPK pathway. In order to further investigate the link between the two pathways and to find new target genes that could be considered for combination therapy, we set out to find transcriptional targets of all three GLI proteins in melanoma. METHODS We performed RNA sequencing on three melanoma cell lines (CHL-1, A375, and MEL224) with overexpressed GLI1, GLI2, and GLI3 and combined them with the results of ChIP-sequencing on endogenous GLI1, GLI2, and GLI3 proteins. After combining these results, 21 targets were selected for validation by qPCR. RESULTS RNA-seq revealed a total of 808 differentially expressed genes (DEGs) for GLI1, 941 DEGs for GLI2, and 58 DEGs for GLI3. ChIP-seq identified 527 genes that contained GLI1 binding sites in their promoters, 1103 for GLI2 and 553 for GLI3. A total of 15 of these targets were validated in the tested cell lines, 6 of which were detected by both RNA-seq and ChIP-seq. CONCLUSIONS Our study provides insight into the unique and overlapping transcriptional output of the GLI proteins in melanoma. We suggest that our findings could provide new potential targets to consider while designing melanoma-targeted therapy.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nenad Bartoniček
- The Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, 370 Victoria St., Darlinghurst, NSW 2010, Australia
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Tina Petrić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Cecile King
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
6
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
7
|
Wei D, Li R, Si T, He H, Wu W. Screening and bioinformatics analysis of key biomarkers in acute myocardial infarction. Pteridines 2021. [DOI: 10.1515/pteridines-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Acute myocardial infarction (AMI) is the most severe manifestation of coronary artery disease. Considerable efforts have been made to elucidate its etiology and pathology, but the genetic factors that play a decisive role in the occurrence of AMI are still unclear. To determine the molecular mechanism of the occurrence and development of AMI, four microarray datasets, namely, GSE29111, GSE48060, GSE66360, and GSE97320, were downloaded from the Gene Expression Omnibus (GEO) database. We analyzed the four GEO datasets to obtain the differential expression genes (DEGs) of patients with AMI and patients with non-AMI and then performed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-protein interaction (PPI) network analysis. A total of 41 DEGs were identified, including 39 upregulated genes and 2 downregulated genes. The enriched functions and pathways of the DEGs included the inflammatory response, neutrophil chemotaxis, immune response, extracellular space, positive regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor activity, response to lipopolysaccharide, receptor for advanced glycation end products (RAGE) receptor binding, innate immune response, defense response to bacterium, and receptor activity. The cytoHubba plug-in in Cytoscape was used to select the most significant hub gene from the PPI network. Ten hub genes were identified, and GO enrichment analysis revealed that these genes were mainly enriched in inflammatory response, neutrophil chemotaxis, immune response, RAGE receptor binding, and extracellular region. In conclusion, this study integrated four datasets and used bioinformatics methods to analyze the gene chips of AMI samples and control samples and identified DEGs that may be involved in the occurrence and development of AMI. The study provides reliable molecular biomarkers for AMI screening, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Dongmei Wei
- Department of Cardiovasology, Liuzhou Traditional Chinese Medical Hospital , Liuzhou , Guangxi Province, 545001 , People’s Republic of China
| | - Rui Li
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| | - Tao Si
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| | - Hankang He
- Department of Cardiovasology, Liuzhou Traditional Chinese Medical Hospital , Liuzhou , Guangxi Province, 545001 , People’s Republic of China
| | - Wei Wu
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| |
Collapse
|