1
|
Lao Q, Wang X, Zhu G, Yuan H, Ma T, Wang N. A Chinese classical prescription Maimendong decoction in treatment of pulmonary fibrosis: an overview. Front Pharmacol 2024; 15:1329743. [PMID: 38783956 PMCID: PMC11112100 DOI: 10.3389/fphar.2024.1329743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive disease characterized by fibrosis and interstitial pneumonia. It has similar clinical symptoms to "Fei Bi" and "Fei Wei" as described in the traditional Chinese medicine (TCM) classic Jingui Yaolue written by Zhang Zhongjing in the Han Dynasty. This study explored the potential of Maimendong Decoction (MMDD). MMDD consists of Ophiopogon japonicus (L.f) (ophiopogonis), Pinellia ternata (Thunb.) Breit. (pinellia), Panax ginseng C. A. Mey. (ginseng), Glycyrrhiza uralensis Fisch. (glycyrrhiza), Zizi phus jujuba Mill. (jujuba), and Oryza sativa L. (oryza sativa), with the function of nourishing the lung and stomach, and reducing the effect of reverse qi. It has been used clinically for over two thousand years to treat conditions like "Fei Bi" and "Fei Wei". Previous research suggests that MMDD and its individual herbal extracts have anti-fibrotic effects. The main focus of MMDD in treating PF is to reduce inflammatory cytokines, inhibit pro-fibrotic factors and oxidative stress, promote differentiation and homing of bone marrow mesenchymal stem cells, and enhance cell autophagy activity. This review summarized the clinical applications, mechanisms, and pharmacological effects of MMDD in treating PF based on existing clinical applications and experimental research. It also discussed current issues and prospects, aiming to provide a reference for further research on the mechanism of PF, drug development, and clinical trials.
Collapse
Affiliation(s)
- Qiurong Lao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianbin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangqing Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haochen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Ma
- College of Rehabilitation Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Wang
- Research Department of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Wang J, Zheng Z, Cui X, Dai C, Li J, Zhang Q, Cheng M, Jiang F. A transcriptional program associated with cell cycle regulation predominates in the anti-inflammatory effects of CX-5461 in macrophage. Front Pharmacol 2022; 13:926317. [PMID: 36386132 PMCID: PMC9644203 DOI: 10.3389/fphar.2022.926317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/12/2022] [Indexed: 09/23/2023] Open
Abstract
CX-5461, a novel selective RNA polymerase I inhibitor, shows potential anti-inflammatory and immunosuppressive activities. However, the molecular mechanisms underlying the inhibitory effects of CX-5461 on macrophage-mediated inflammation remain to be clarified. In the present study, we attempted to identify the systemic biological processes which were modulated by CX-5461 in inflammatory macrophages. Primary peritoneal macrophages were isolated from normal Sprague Dawley rats, and primed with lipopolysaccharide or interferon-γ. Genome-wide RNA sequencing was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used for gene functional annotations. Enrichment analysis was conducted using the ClusterProfiler package of R software. We found that CX-5461 principally induced a molecular signature related to cell cycle inhibition in primed macrophages, featuring downregulation of genes encoding cell cycle mediators and concomitant upregulation of cell cycle inhibitors. At the same concentration, however, CX-5461 did not induce a systemic anti-inflammatory transcriptional program, although some inflammatory genes such as IL-1β and gp91phox NADPH oxidase were downregulated by CX-5461. Our data further highlighted a central role of p53 in orchestrating the molecular networks that were responsive to CX-5461 treatment. In conclusion, our study suggested that limiting cell proliferation predominated in the inhibitory effects of CX-5461 on macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaxin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
4
|
Yamaguchi M, Nishida T, Sato Y, Nakai Y, Kashiwakura I. Identification of Radiation-Dose-Dependent Expressive Genes in Individuals Exposed to External Ionizing Radiation. Radiat Res 2020; 193:274-285. [DOI: 10.1667/rr15532.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yoshiaki Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yuji Nakai
- Institute of Regional Innovation, Section of Food Sciences, Laboratory of Foods, Hirosaki University, Aomori 038-0012, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| |
Collapse
|
5
|
Tang X, Aljahdali B, Alasiri M, Bamashmous A, Cao F, Dibart S, Salih E. A method for high transfection efficiency in THP-1 suspension cells without PMA treatment. Anal Biochem 2018; 544:93-97. [PMID: 29305095 DOI: 10.1016/j.ab.2017.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023]
Abstract
Adherent cells such as mouse RAW cells or human cancer U2OS cells are beneficial to DNA transfection, with 20%-60% transfection efficiency. However, this DNA transfection is rarely used on suspension cells due to its low transfection efficiency (≤5%). We recently found a new DNA transfection method to increase the efficiency up to 13.5% in suspension cells without PMA treatment. We also found that DNA transfection of human TNFAIP1 or CXCL1 recombinant plasmid DNA in THP-1 cells induces a high level of TNF-α protein. Overall, this new method is simple yet efficient and can be used for the overexpression of DNA in suspension cells.
Collapse
Affiliation(s)
- Xiaoren Tang
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States.
| | - Bushra Aljahdali
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| | - Mansour Alasiri
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| | - Abdullah Bamashmous
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| | - Feng Cao
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| | - Serge Dibart
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| | - Erdjan Salih
- Boston University, Henry M. Goldman School of Dental Medicine, Department of Periodontology, 100E.Newton Street, 02118, Boston, MA, United States
| |
Collapse
|
6
|
Zheng Y, Zhao G, Xu B, Liu C, Li C, Zhang X, Chang X. PADI4 has genetic susceptibility to gastric carcinoma and upregulates CXCR2, KRT14 and TNF-α expression levels. Oncotarget 2018; 7:62159-62176. [PMID: 27556695 PMCID: PMC5308718 DOI: 10.18632/oncotarget.11398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
PADI4 (peptidyl deiminase isoform 4) is overexpressed in many tumor tissues and converts arginine residues to citrulline residues. This study used an Illumina SNP microarray and a TaqMan assay to determine the possible association of the PADI4 gene with various tumor risks. Both genotyping methods demonstrated significant associations between the tag SNPs rs1635566 and rs882537 in the PADI4 locus with gastric carcinoma in two independent cohorts. Based on this genotyping result, we used the Cancer Pathway Finder, p53 Signaling, Signal Transduction and Tumor Metastasis PCR arrays to investigate the tumorigenic pathway of PADI4 in MNK-45 cells derived from gastric carcinoma. We detected significantly decreased expression levels of CXCR2, KRT14 and TNF-α in MNK-45 cells that were treated with anti-PADI4 siRNA. We also detected increased expression of these three genes in MNK-45 cells transfected with a pcDNA3.1 plasmid overexpressing PADI4. A highly similar result was also obtained for SGC 7901 cells, which also originate from gastric carcinoma. Our result indicates that the PADI4 gene has genetic susceptibility in gastric carcinoma. PADI4 contributes to gastric tumorigenesis by upregulating CXCR2, KRT14 and TNF-α expression, which are well known to activate angiogenesis, cell proliferation, cell migration and the immune microenvironment in tumors.
Collapse
Affiliation(s)
- Yabing Zheng
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Gang Zhao
- Emergency Surgery Department of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chunyan Liu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Pathological Department of Tengzhou People's Central Hospital, Tengzhou, Shandong, P. R. China
| | - Xiaoqian Zhang
- Clinical Laboratory of PKUCare Luzhong Hospital, Zibo, Shandong, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
7
|
Tang X, Amar S. p53 suppresses CCL2-induced subcutaneous tumor xenograft. Tumour Biol 2014; 36:2801-8. [PMID: 25492482 DOI: 10.1007/s13277-014-2906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022] Open
Abstract
Chemokine (C-C motif) ligand 2 (CCL2) has recently been found to be a key player in the pathology of many human glomerular and tubulointerstitial diseases. CCL2 has also been found to be expressed in various cancers, including human hepatoma cells, human cancer progression, and human multiple myeloma cells. Thus, the inhibition of elevated CCL2 production may provide a new avenue for therapeutic intervention in CCL2-mediated cancer diseases. A previous study has indicated that knockdown of human p53 has a strong negative impact on CCL2 induction. We therefore are interested in how p53 regulates CCL2 gene expression. In the following study, our findings indicate that p53 binds to CCL2, consequently significantly downregulating CCL2 promoter activity. Furthermore, injection of CCL2-promoting cancer cells (CCL2/A549) in p53-deficient mice for 3 weeks strongly induced subcutaneous xenograft tumor growth compared with the control. Overall, the research results support the novel role of p53 in suppression of chemokine (such as CCL2)-mediated cancer diseases.
Collapse
Affiliation(s)
- Xiaoren Tang
- Center for Anti-Inflammatory Therapeutics, Department of Molecular & Cell Biology, Boston University Goldman School of Dental Medicine, 650 Albany Street, X-343, Boston, MA, 02118, USA
| | | |
Collapse
|
8
|
Tang X, Asano M, O'Reilly A, Farquhar A, Yang Y, Amar S. p53 is an important regulator of CCL2 gene expression. Curr Mol Med 2013; 12:929-43. [PMID: 22804246 DOI: 10.2174/156652412802480844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
The p53 protein is a sequence-specific DNA-binding factor that regulates inflammatory genes such as CCL2/MCP-1 that may play a role in various diseases. A recent study has indicated that the knockdown of human p53 leads to a strong negative regulation of CCL2 induction. We are therefore interested in how p53 regulates CCL2 gene expression. In the following study, our findings indicate that UV-induced p53 accumulation in mouse macrophages significantly decreases LPS-induced CCL2 production, and that p53 binds to CCL2 5'UTR in the region (16-35). We also found that a p53 domain (p53pep170) mimics full length p53 to down-regulate CCL2 promoter activity. Treatment of p53-deficient mouse primary macrophages with synthetic p53pep170 was found to decrease LPS-induced production of CCL2 without association with cellular endogenous p53. CCL2 production induced by lentiCLG in human monocytes or mouse primary macrophages was blocked in the presence of p53pep170. Overall, these results demonstrate that p53 or its derived peptide (p53pep170) is an important regulator of CCL2 gene expression via its binding activity, and acts as a novel model for future studies linking p53 and its short peptide to pave the way to possible pharmaceutical intervention of CCL2-mediated inflammatory and cancer diseases.
Collapse
Affiliation(s)
- X Tang
- Center for Anti- Inflammatory Therapeutics, Boston University, 650 Albany Street, X- 343, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Whole-body deletion of LPS-induced TNF-α factor (LITAF) markedly improves experimental endotoxic shock and inflammatory arthritis. Proc Natl Acad Sci U S A 2011; 108:21247-52. [PMID: 22160695 DOI: 10.1073/pnas.1111492108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
LPS-induced TNF-α factor (LITAF) mediates cytokine expression in response to endotoxin challenge. Previously, we reported that macrophage-specific LITAF-deficient (macLITAF-/-) mice exposed to LPS have a delayed onset in the serum levels of proinflammatory cytokines and prolonged persistence of anti-inflammatory cytokines, but only partial protection from endotoxic shock. We postulated that greater protection might be achieved if LITAF were deleted from all LITAF-producing cells, including macrophages. Using a Cre-loxP system, we engineered a tamoxifen-induced recombination mouse [tamLITAF(i)-/-] that resulted in whole-body LITAF deficiency. Our findings demonstrate that (i) tamLITAF(i)-/- mice are more resistant to systemic Escherichia coli LPS-induced lethality than our previous macLITAF-/- mice, providing evidence that LITAF-producing cells other than LysMCre-positive cells play an important role in mediating endotoxic shock; (ii) tamLITAF(i)-/- mice show a similar pattern of cytokine expression with decreased proinflammatory and prolonged anti-inflammatory mediators compared with WT mice; and (iii) tamLITAF(i)-/- mice, compared with WT mice, display a significant reduction in bone resorption and inflammation associated with a local chronic inflammatory disease--namely, collagen antibody-induced arthritis. Our findings offer a unique model to study the role of LITAF in systemic and chronic local inflammatory processes, and pave the way for anti-LITAF therapeutic approaches for the treatment of TNF-mediated inflammatory diseases.
Collapse
|