1
|
Hashem SA, Georgiou M, Fujinami-Yokokawa Y, Laich Y, Daich Varela M, de Guimaraes TAC, Ali N, Mahroo OA, Webster AR, Fujinami K, Michaelides M. Genetics, Clinical Characteristics, and Natural History of PDE6B-Associated Retinal Dystrophy. Am J Ophthalmol 2024; 263:1-10. [PMID: 38364953 DOI: 10.1016/j.ajo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE To analyze the clinical characteristics, natural history, and genetics of PDE6B-associated retinal dystrophy. DESIGN Retrospective, observational cohort study. METHODS Review of medical records and retinal imaging, including fundus autofluorescence (FAF) imaging and spectral-domain optical coherence tomography (SD-OCT) of patients with molecularly confirmed PDE6B-associated retinal dystrophy in a single tertiary referral center. Genetic results were reviewed, and the detected variants were assessed. RESULTS Forty patients (80 eyes) were identified and evaluated longitudinally. The mean age (±SD, range) was 42.1 years (± 19.0, 10-86) at baseline, with a mean follow-up time of 5.2 years. Twenty-nine (72.5%) and 27 (67.5%) patients had no or mild visual acuity impairment at baseline and last visit, respectively. Best-corrected visual acuity (BCVA) was 0.56 ± 0.72 LogMAR (range -0.12 to 2.80) at baseline and 0.63 ± 0.73 LogMAR (range 0.0-2.80) at the last visit. BCVA was symmetrical in 87.5% of patients. A hyperautofluorescent ring was observed on FAF in 48 and 46 eyes at baseline and follow-up visit, respectively, with a mean area of 7.11 ± 4.13 mm2 at baseline and mean of 6.13 ± 3.62 mm2 at the follow-up visit. Mean horizontal ellipsoid zone width at baseline was 1946.1 ± 917.2 µm, which decreased to 1763.9 ± 827.9 µm at follow-up. Forty-four eyes had cystoid macular edema at baseline (55%), and 41 eyes (51.3%) at follow-up. There were statistically significant changes during the follow-up period in terms of BCVA and the ellipsoid zone width. Genetic analysis identified 43 variants in the PDE6B gene, including 16 novel variants. CONCLUSIONS This study details the natural history of PDE6B-retinopathy in the largest cohort to date. Most patients had mild to no BCVA loss, with slowly progressive disease, based on FAF and OCT metrics. There is a high degree of disease symmetry and a wide window for intervention.
Collapse
Affiliation(s)
- Shaima Awadh Hashem
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Michalis Georgiou
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences (M.G.), Little Rock, Arkansas, USA
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (Y.F.Y.), National Institute of Sensory Organs, NHONHO Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management (Y.F.Y.), Keio University School of Medicine, Tokyo, Japan
| | - Yannik Laich
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Eye Center, Faculty of Medicine, University Freiburg (Y.L.), Germany
| | - Malena Daich Varela
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Thales A C de Guimaraes
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Naser Ali
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Section of Ophthalmology, King's College London, St Thomas' Hospital Campus (O.A.M.), London, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge (O.A.M.), Cambridge, United Kingdom
| | - Andrew R Webster
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Kaoru Fujinami
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (Y.F.Y.), National Institute of Sensory Organs, NHONHO Tokyo Medical Center, Tokyo, Japan
| | - Michel Michaelides
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom.
| |
Collapse
|
2
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
3
|
Vagni P, Perlini LE, Chenais NAL, Marchetti T, Parrini M, Contestabile A, Cancedda L, Ghezzi D. Gene Editing Preserves Visual Functions in a Mouse Model of Retinal Degeneration. Front Neurosci 2019; 13:945. [PMID: 31551698 PMCID: PMC6748340 DOI: 10.3389/fnins.2019.00945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large and heterogeneous group of degenerative diseases caused by mutations in various genes. Given the favorable anatomical and immunological characteristics of the eye, gene therapy holds great potential for their treatment. Our goal is to validate the preservation of visual functions by viral-free homology directed repair (HDR) in an autosomal recessive loss of function mutation. We used a tailored gene editing system based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to prevent retinal photoreceptor death in the retinal degeneration 10 (Rd10) mouse model of retinitis pigmentosa. We tested the gene editing tool in vitro and then used in vivo subretinal electroporation to deliver it to one of the retinas of mouse pups at different stages of photoreceptor differentiation. Three months after gene editing, the treated eye exhibited a higher visual acuity compared to the untreated eye. Moreover, we observed preservation of light-evoked responses both in explanted retinas and in the visual cortex of treated animals. Our study validates a CRISPR/Cas9-based therapy as a valuable new approach for the treatment of retinitis pigmentosa caused by autosomal recessive loss-of-function point mutations.
Collapse
Affiliation(s)
- Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura E Perlini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Naïg A L Chenais
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tommaso Marchetti
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Parrini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Contestabile
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Dulbecco Telethon Institute, Roma, Italy
| | - Diego Ghezzi
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
4
|
Tao Y, Zhu Q, Wang L, Zha X, Teng D, Xu L. Adeno-associated virus (AAV)-mediated neuroprotective effects on the degenerative retina: the therapeutic potential of erythropoietin. Fundam Clin Pharmacol 2019; 34:131-147. [PMID: 31243792 DOI: 10.1111/fcp.12494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/01/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Retinal degeneration (RD) results in photoreceptor loss and irreversible visual impairments. This study sought to alleviate the photoreceptor degeneration via the adeno-associated virus (AAV)-mediated erythropoietin (EPO) therapy. AAV-2/2-mCMV-EPO vectors were constructed and delivered into the subretinal space of a RD model. The retinal morphology, optokinetic behaviour and electrophysiological function of the treated animals were analysed. The subretinal delivery of AAV-2/2 vectors induced robust EPO gene expressions in the retinas. AAV2/2-mediated EPO therapy ameliorated the photoreceptor degeneration and visual impairments of the RD animal model. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells. MEA recording showed that the EPO therapy could restrain the spontaneous firing response, enhance the light-induced firing response and preserve the basic configurations of visual signal pathway in RD model. Our MEA assay provided an example to evaluate the potency of pharmacological compounds on retinal plasticity. In conclusion, AAV2/2-mediated EPO therapy can ameliorate the photoreceptor degeneration and rectify the abnormities in visual signal transmission. These beneficial results suggest the AAV vector is a viable therapeutic option for retinopathies with rapidly degenerating kinetics and lay the groundwork for future development of EPO gene therapy.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.,Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Liqiang Wang
- Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Zha
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dengke Teng
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| |
Collapse
|
5
|
Butler MC, Sullivan JM. Ultrahigh Resolution Mouse Optical Coherence Tomography to Aid Intraocular Injection in Retinal Gene Therapy Research. J Vis Exp 2018. [PMID: 30451216 DOI: 10.3791/55894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HR-SD-OCT is utilized to monitor the progression of photoreceptor degeneration in live mouse models, assess the delivery of therapeutic agents into the subretinal space, and to evaluate toxicity and efficacy in vivo. HR-SD-OCT uses near infrared light (800-880 nm) and has optics specifically designed for the unique optics of the mouse eye with sub-2-micron axial resolution. Transgenic mouse models of outer retinal (photoreceptor) degeneration and controls were imaged to assess the disease progression. Pulled glass microneedles were used to deliver sub retinal injections of adeno-associated virus (AAV) or nanoparticles (NP) via a trans-scleral and trans-choroidal approach. Careful positioning of the needle into the subretinal space was required prior to a calibrated pressure injection, which delivers fluid into the sub retinal space. Real time subretinal surgery was conducted on our retinal imaging system (RIS). HR-SD-OCT demonstrated progressive uniform retinal degeneration due to expression of a toxic mutant human mutant rhodopsin (P347S) (RHOP347S) transgene in mice. HR-SD-OCT allows rigorous quantification of all the retinal layers. Outer nuclear layer (ONL) thickness and photoreceptor outer segment length (OSL) measurements correlate with photoreceptor vitality, degeneration, or rescue. The RIS delivery system allows real-time visualization of subretinal injections in neonatal (~P10-14) or adult mice, and HR-SD-OCT immediately determines success of delivery and maps areal extent. HR-SD-OCT is a powerful tool that can evaluate the success of subretinal surgery in mice, in addition to measuring vitality of photoreceptors in vivo. HR-SD-OCT can also be used to identify uniform animal cohorts to evaluate the extent of retinal degeneration, toxicity, and therapeutic rescue in preclinical gene therapy research studies.
Collapse
Affiliation(s)
- Mark C Butler
- Research Service, VA Western New York Healthcare System; Department of Ophthalmology, (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System; Department of Ophthalmology, (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY; Pharmacology/Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY; Physiology/Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY; Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY; The RNA Institute, University at Buffalo- SUNY; The SUNY Eye Institute;
| |
Collapse
|
6
|
Dai X, He Y, Zhang H, Zhang Y, Liu Y, Wang M, Chen H, Pang JJ. Long-term retinal cone rescue using a capsid mutant AAV8 vector in a mouse model of CNGA3-achromatopsia. PLoS One 2017; 12:e0188032. [PMID: 29131863 PMCID: PMC5683625 DOI: 10.1371/journal.pone.0188032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/29/2017] [Indexed: 01/26/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are important gene delivery tools for the treatment of many recessively inherited retinal diseases. For example, a wild-type (WT) AAV5 vector can deliver a full-length Cnga3 (cyclic nucleotide-gated channel alpha-3) cDNA to target cells of the cone photoreceptor function loss 5 (cpfl5) mouse, a spontaneous animal model of achromatopsia with a Cnga3 mutation. Gene therapy restores cone-mediated function and blocks cone degeneration in the mice. However, since transgene expression delivered by an AAV vector shows relatively short-term effectiveness, this cannot be regarded as a very successful therapy. AAV2 and AAV8 vectors with capsid mutations have significantly enhanced transduction efficiency in retinas compared to WT AAV controls. In this study, AAV8 (Y447, 733F+T494V)-treated cpfl5 retinas showed greater preservation of short-term cone electroretinogram (ERG) responses than AAV8 (Y447, 733F)- or AAV2 (Y272, 444, 500, 730F+T491V)-mediated treatments. To explore the long-term rescue effect, AAV8 (Y447, 733F+T494V)-treated cpfl5 retinas were evaluated at 9 months following postnatal day 14 (P14) treatment. Rescued ERG responses in the cones of treated cpfl5 eyes decreased with increasing age, but still maintained more than 60% of the WT mouse responses at the oldest time point examined. Expression of CNGA3 and M/S-opsins was maintained in cone outer segments of the treated cpfl5 eyes and was equal to expression in age-matched WT retinas. Near-normal cone-mediated water maze behavior was observed in the treated cpfl5 mice. As these are the longest follow-up data reported thus far, AAV8 with capsid Y-F and T-V mutations may be one of the most effective AAV vectors for long-term treatment in a naturally occurring mouse model of CNGA3 achromatopsia.
Collapse
Affiliation(s)
- Xufeng Dai
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ying He
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hua Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yangyang Zhang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yan Liu
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Muran Wang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hao Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (HC); (JP)
| | - Ji-jing Pang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- * E-mail: (HC); (JP)
| |
Collapse
|
7
|
Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. DISCOVERY MEDICINE 2016; 22:221-229. [PMID: 27875674 PMCID: PMC5142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations, and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases.
Collapse
Affiliation(s)
- Lolita Petit
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Butler MC, Sullivan JM. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System. Invest Ophthalmol Vis Sci 2016; 56:7159-68. [PMID: 26551329 DOI: 10.1167/iovs.14-16370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. METHODS Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. RESULTS The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. CONCLUSIONS A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.
Collapse
Affiliation(s)
- Mark C Butler
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, Ross Eye Institute, University at Buffalo-SUNY, Buffalo, New York, United States
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, Ross Eye Institute, University at Buffalo-SUNY, Buffalo, New York, United States 3Department of Pharmacology/Toxicology, University at
| |
Collapse
|
9
|
Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 2015; 23:196-204. [PMID: 26348595 PMCID: PMC4863462 DOI: 10.1038/gt.2015.93] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/05/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether AAV-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314-codons, “short form”) or 1/3 (126-codons, “long form”) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post-treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3.
Collapse
|
10
|
Dai X, Han J, Qi Y, Zhang H, Xiang L, Lv J, Li J, Deng WT, Chang B, Hauswirth WW, Pang JJ. AAV-mediated lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene replacement therapy rescues retinal degeneration in rd11 mice. Invest Ophthalmol Vis Sci 2014; 55:1724-34. [PMID: 24557352 DOI: 10.1167/iovs.13-13654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The retinal degeneration 11 (rd11) mouse is a newly discovered, naturally occurring animal model with early photoreceptor dysfunction and rapid rod photoreceptor degeneration followed by cone degeneration. The rd11 mice carry a spontaneous mutation in the lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene. Here, we evaluate whether gene replacement therapy using the fast-acting tyrosine-capsid mutant AAV8 (Y733F) can arrest retinal degeneration and restore retinal function in this model. METHODS The AAV8 (Y733F)-smCBA-Lpcat1 was delivered subretinally to postnatal day 14 (P14) rd11 mice in one eye only. At 10 weeks after injection, treated rd11 mice were examined by visually-guided behavior, electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT), and then killed for morphologic and biochemical examination. RESULTS Substantial scotopic and photopic ERG signals were maintained in treated rd11 eyes, whereas untreated eyes in the same animals showed extinguished signals. The SD-OCT (in vivo) and light microscopy (in vitro) showed a substantial preservation of the outer nuclear layer in most parts of the treated retina only. Almost wild-type LPCAT1 expression in photoreceptors with strong rod rhodopsin and M/S cone opsin staining, and normal visually-guided water maze behavioral performances were observed in treated rd11 mice. CONCLUSIONS The results demonstrate that the tyrosine-capsid mutant AAV8 (Y733F) vector is effective for treating rapidly degenerating models of retinal degeneration and, moreover, is more therapeutically effective than AAV2 (Y444, 500, 730F) vector with the same promoter-cDNA payload. To our knowledge, this is the first demonstration of phenotypic rescue by gene therapy in an animal model of retinal degeneration caused by Lpcat1 mutation.
Collapse
Affiliation(s)
- Xufeng Dai
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MicroRNAs in the Neural Retina. Int J Genomics 2014; 2014:165897. [PMID: 24745005 PMCID: PMC3972879 DOI: 10.1155/2014/165897] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
The health and function of the visual system rely on a collaborative interaction between diverse classes of molecular regulators. One of these classes consists of transcription factors, which are known to bind to DNA and control the transcription activities of their target genes. For a long time, it was thought that the transcription factors were the only regulators of gene expression. More recently, however, a novel class of regulators emerged. This class consists of a large number of small noncoding endogenous RNAs, namely, miRNAs. The miRNAs compose an essential component of posttranscriptional gene regulation, since they ultimately control the fate of gene transcripts. The retina, as a part of the central nervous system, is a well-established model for unraveling the molecular mechanisms underlying neuronal and glial functions. Numerous recent efforts have been made towards identification of miRNAs and their inferred roles in the visual pathway. In this review, we summarize the current state of our knowledge regarding the expression and function of miRNA in the neural retina and we discuss their potential uses as biomarkers for some retinal disorders.
Collapse
|
12
|
Affiliation(s)
- Caroline J. Zeiss
- Section of Comparative Medicine; Yale University School of Medicine; 375 Congress Ave New Haven CT 06520 USA
| |
Collapse
|
13
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS One 2012; 7:e35250. [PMID: 22509403 PMCID: PMC3324465 DOI: 10.1371/journal.pone.0035250] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/12/2012] [Indexed: 12/22/2022] Open
Abstract
Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia.
Collapse
|