1
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Iglesias-Mejuto A, Magariños B, Ferreira-Gonçalves T, Starbird-Pérez R, Álvarez-Lorenzo C, Reis CP, Ardao I, García-González CA. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Carbohydr Polym 2024; 324:121536. [PMID: 37985110 DOI: 10.1016/j.carbpol.2023.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Scaffolds grafting combined with local delivery of antibiotics at the injury site may promote bone regeneration along with prevention of infections. In this work, a processing strategy combining the 3D-printing of polysaccharide-based inks with supercritical (sc)CO2 technology was employed to manufacture drug-loaded, nanostructured, and personalized-to-patient aerogels for the first time. Methylcellulose (MC) was employed as graft matrix endowed with nanohydroxyapatite (nHA) to confer bioactivity as required in bone tissue engineering (BTE). MC-nHA aerogels were obtained through the 3D-printing of hydrogel-based scaffolds followed by scCO2 drying. Aerogels were loaded with vancomycin (VAN), an antibiotic employed in the management of bone infections. Textural properties and printing fidelity of scaffolds were studied as well as VAN release, long-term bioactivity, and pre-osteoblasts mineralization. In vitro cell studies and in vivo Artemia salina tests were carried out to evaluate the potential toxicity of the antibiotic-loaded aerogels. Aerogels efficacy in inhibiting bacterial growth was assessed by antimicrobial tests with Staphylococcus aureus. Textural stability of the aerogels after 7 months of storage was also evaluated. Obtained results showed that the scaffolds promoted the intended two-in-one effect (bone repair and infection management simultaneously) in a personalized way, regulating formulation design, drug dose, and porosity.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ricardo Starbird-Pérez
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Carmen Álvarez-Lorenzo
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Inés Ardao
- BioFarma Research group, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
López-González I, Hernández-Heredia AB, Rodríguez-López MI, Auñón-Calles D, Boudifa M, Gabaldón JA, Meseguer-Olmo L. Evaluation of the In Vitro Antimicrobial Efficacy against Staphylococcus aureus and epidermidis of a Novel 3D-Printed Degradable Drug Delivery System Based on Polycaprolactone/Chitosan/Vancomycin-Preclinical Study. Pharmaceutics 2023; 15:1763. [PMID: 37376211 DOI: 10.3390/pharmaceutics15061763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are present. In this work, we evaluate the antimicrobial efficacy against S. aureus and S. epidermidis of a novel hybrid 3D-printed scaffold based on polycaprolactone (PCL) and a chitosan (CS) hydrogel loaded with different vancomycin (Van) concentrations (1, 5, 10, 20%). Two cold plasma treatments were used to improve the adhesion of CS hydrogels to the PCL scaffolds by decreasing PCL hydrophobicity. Vancomycin release was measured by means of HPLC, and the biological response of ah-BM-MSCs growing in the presence of the scaffolds was evaluated in terms of cytotoxicity, proliferation, and osteogenic differentiation. The PCL/CS/Van scaffolds tested were found to be biocompatible, bioactive, and bactericide, as demonstrated by no cytotoxicity (LDH activity) or functional alteration (ALP activity, alizarin red staining) of the cultured cells and by bacterial inhibition. Our results suggest that the scaffolds developed would be excellent candidates for use in a wide range of biomedical fields such as drug delivery systems or tissue engineering applications.
Collapse
Affiliation(s)
- Iván López-González
- Tissue Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue Engineering, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández-Heredia
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Isabel Rodríguez-López
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - David Auñón-Calles
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Mohamed Boudifa
- CRITT-Matériaux Innovation, 9 Rue Claude Chrétien, Campus Sup Ardenne, 08000 Charleville-Mézières, France
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue Engineering, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
4
|
Hexapeptide decorated β-cyclodextrin delivery system for targeted therapy of bone infection. J Control Release 2023; 353:337-349. [PMID: 36462641 DOI: 10.1016/j.jconrel.2022.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Successfully treating bone infections is a major orthopedic challenge. Clinically, oral, intravenous, or intramuscular injections of drugs are usually used for direct or complementary treatment. However, once the drug enters the system, it circulates throughout the body, leading to an insufficient local dose and limiting the therapeutic effect because of the lack of targeting in the drug system. In this study, β-cyclodextrin, modified with poly (ethylene glycol) [PEG] and aspartic acid hexapeptide (Asp6-β-CD), was used to specifically target the hydroxyapatite (HA) component of the bone. It was then loaded with norfloxacin (NFX) to treat bone infections. The antibacterial ability of NFX was enhanced by loading it into Asp6-β-CD, because the solubility of Asp6-β-CD@NFX increased significantly. Moreover, Asp6-β-CD could target bone tissue in nude mice and showed significantly enhanced accumulation (10 times) than the unmodified β-CD. In addition, in a rat model of osteomyelitis, Asp6-β-CD@NFX targeted HA well and exerted its antibacterial activity, which reduced inflammation and promoted bone tissue repair. This study indicates that the Asp6-β-CD based drug delivery system can efficiently target bone tissue to enable potential applications for treating bone-related diseases.
Collapse
|
5
|
Delaney LJ, Isguven S, Eisenbrey JR, Hickok NJ, Forsberg F. Making waves: how ultrasound-targeted drug delivery is changing pharmaceutical approaches. MATERIALS ADVANCES 2022; 3:3023-3040. [PMID: 35445198 PMCID: PMC8978185 DOI: 10.1039/d1ma01197a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 05/06/2023]
Abstract
Administration of drugs through oral and intravenous routes is a mainstay of modern medicine, but this approach suffers from limitations associated with off-target side effects and narrow therapeutic windows. It is often apparent that a controlled delivery of drugs, either localized to a specific site or during a specific time, can increase efficacy and bypass problems with systemic toxicity and insufficient local availability. To overcome some of these issues, local delivery systems have been devised, but most are still restricted in terms of elution kinetics, duration, and temporal control. Ultrasound-targeted drug delivery offers a powerful approach to increase delivery, therapeutic efficacy, and temporal release of drugs ranging from chemotherapeutics to antibiotics. The use of ultrasound can focus on increasing tissue sensitivity to the drug or actually be a critical component of the drug delivery. The high spatial and temporal resolution of ultrasound enables precise location, targeting, and timing of drug delivery and tissue sensitization. Thus, this noninvasive, non-ionizing, and relatively inexpensive modality makes the implementation of ultrasound-mediated drug delivery a powerful method that can be readily translated into the clinical arena. This review covers key concepts and areas applied in the design of different ultrasound-mediated drug delivery systems across a variety of clinical applications.
Collapse
Affiliation(s)
- Lauren J Delaney
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| | - Selin Isguven
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street Philadelphia PA 19107 USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street Philadelphia PA 19107 USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| |
Collapse
|
6
|
Hosseinkhani H. Developing 3D Technology for Drug Discovery. Curr Drug Deliv 2022; 19:813-814. [PMID: 35081891 DOI: 10.2174/1567201819666220126163444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Developing 3D living systems will open many doors and lead to significant improvements in biological tools, drug discovery process, lead identification as well as therapeutic approaches. The miniaturization of this approach allows one to perform many more experiments than previously possible in a simpler manner. 3D in vitro technology aim to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, therapeutic approaches, and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| |
Collapse
|