1
|
Cadoni MPL, Coradduzza D, Congiargiu A, Sedda S, Zinellu A, Medici S, Nivoli AM, Carru C. Platelet Dynamics in Neurodegenerative Disorders: Investigating the Role of Platelets in Neurological Pathology. J Clin Med 2024; 13:2102. [PMID: 38610867 PMCID: PMC11012481 DOI: 10.3390/jcm13072102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Neurological disorders, particularly those associated with aging, pose significant challenges in early diagnosis and treatment. The identification of specific biomarkers, such as platelets (PLTs), has emerged as a promising strategy for early detection and intervention in neurological health. This systematic review aims to explore the intricate relationship between PLT dynamics and neurological health, focusing on their potential role in cognitive functions and the pathogenesis of cognitive disorders. Methods: Adhering to PRISMA guidelines, a comprehensive search strategy was employed in the PubMed and Scholar databases to identify studies on the role of PLTs in neurological disorders published from 2013 to 2023. The search criteria included studies focusing on PLTs as biomarkers in neurological disorders, their dynamics, and their potential in monitoring disease progression and therapy effectiveness. Results: The systematic review included 104 studies, revealing PLTs as crucial biomarkers in neurocognitive disorders, acting as inflammatory mediators. The findings suggest that PLTs share common features with altered neurons, which could be utilised for monitoring disease progression and evaluating the effectiveness of treatments. PLTs are identified as significant biomarkers for detecting neurological disorders in their early stages and understanding the pathological events leading to neuronal death. Conclusions: The systematic review underscores the critical role of PLTs in neurological disorders, highlighting their potential as biomarkers for the early detection and monitoring of disease progression. However, it also emphasises the need for further research to solidify the use of PLTs in neurological disorders, aiming to enhance early diagnosis and intervention strategies.
Collapse
Affiliation(s)
| | | | | | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Matilde Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Psychiatric Unit Clinic of the University Hospital, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Li TR, Liu FQ. β-Amyloid promotes platelet activation and activated platelets act as bridge between risk factors and Alzheimer's disease. Mech Ageing Dev 2022; 207:111725. [PMID: 35995275 DOI: 10.1016/j.mad.2022.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an evolving challenge that places an enormous burden on families and society. The presence of obvious brain β-amyloid (Aβ) deposition is a premise to diagnose AD, which induces the subsequent tau hyperphosphorylation and neurodegeneration. Platelets are the primary source of circulating amyloid precursor protein (APP). Upon activation, they can secrete significant amounts of Aβ into the blood, which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. In this review, we summarized the changes in the platelet APP metabolic pathway in patients with AD and further comprehensively explored the targets and downstream events of Aβ-activated platelets. In addition, we attempted to clarify whether patients with AD are in a state of general platelet activation, with inconsistent results. Considering the increasingly evident bidirectional relationship between AD and vascular events, we speculate that the AD pathology alone seems to be insufficient to induce the general activation of platelets; however, the intervention of third-party factors, such as atherosclerosis, exposes the extracellular matrix and leads to platelet activation, further promoting AD progression. Therefore, we proposed a framework in which the relationship between platelets and AD is indirect and mediated by vascular factors. Therapies targeting platelets and interventions for vascular risk factors are likely to contribute to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Feng-Qi Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Platelet APP Processing: Is It a Tool to Explore the Pathophysiology of Alzheimer's Disease? A Systematic Review. Life (Basel) 2021; 11:life11080750. [PMID: 34440494 PMCID: PMC8401829 DOI: 10.3390/life11080750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The processing of the amyloid precursor protein (APP) is a critical event in the formation of amyloid plaques. Platelets contain most of the enzymatic machinery required for APP processing and correlates of intracerebral abnormalities have been demonstrated in platelets of patients with AD. The goal of the present paper was to analyze studies exploring platelet APP metabolism in Alzheimer's disease patients trying to assess potential reliable peripheral biomarkers, to offer new therapeutic solutions and to understand the pathophysiology of the AD. According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to June 2020 with the search terms: "((((((APP) OR Amyloid Precursor Protein) OR AbetaPP) OR Beta Amyloid) OR Amyloid Beta) OR APP-processing) AND platelet". Thirty-two studies were included in this systematic review. The papers included are analytic observational studies, namely twenty-nine cross sectional studies and three longitudinal studies, specifically prospective cohort study. The studies converge in an almost unitary way in affirming that subjects with AD show changes in APP processing compared to healthy age-matched controls. However, the problem of the specificity and sensitivity of these biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
5
|
Yu H, Liu Y, He B, He T, Chen C, He J, Yang X, Wang J. Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell 2021; 20:e13358. [PMID: 33942972 PMCID: PMC8135080 DOI: 10.1111/acel.13358] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Memory loss is the most common clinical sign in Alzheimer's disease (AD); thus, searching for peripheral biomarkers to predict cognitive decline is promising for early diagnosis of AD. As platelets share similarities to neuron biology, it may serve as a peripheral matrix for biomarkers of neurological disorders. Here, we conducted a comprehensive and in-depth platelet proteomic analysis using TMT-LC-MS/MS in the populations with mild cognitive impairment (MCI, MMSE = 18-23), severe cognitive impairments (AD, MMSE = 2-17), and the age-/sex-matched normal cognition controls (MMSE = 29-30). A total of 360 differential proteins were detected in MCI and AD patients compared with the controls. These differential proteins were involved in multiple KEGG pathways, including AD, AMP-activated protein kinase (AMPK) pathway, telomerase RNA localization, platelet activation, and complement activation. By correlation analysis with MMSE score, three positively correlated pathways and two negatively correlated pathways were identified to be closely related to cognitive decline in MCI and AD patients. Partial least squares discriminant analysis (PLS-DA) showed that changes of nine proteins, including PHB, UQCRH, CD63, GP1BA, FINC, RAP1A, ITPR1/2, and ADAM10 could effectively distinguish the cognitively impaired patients from the controls. Further machine learning analysis revealed that a combination of four decreased platelet proteins, that is, PHB, UQCRH, GP1BA, and FINC, was most promising for predicting cognitive decline in MCI and AD patients. Taken together, our data provide a set of platelet biomarkers for predicting cognitive decline which may be applied for the early screening of AD.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Yanchao Liu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Benrong He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ting He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Chongyang Chen
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jiahua He
- School of Physics Huazhong University of Science and Technology Wuhan Hubei China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jian‐Zhi Wang
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
6
|
Hampel H, Lista S, Vanmechelen E, Zetterberg H, Giorgi FS, Galgani A, Blennow K, Caraci F, Das B, Yan R, Vergallo A. β-Secretase1 biological markers for Alzheimer's disease: state-of-art of validation and qualification. Alzheimers Res Ther 2020; 12:130. [PMID: 33066807 PMCID: PMC7566058 DOI: 10.1186/s13195-020-00686-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023]
Abstract
β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Filippo Sean Giorgi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
7
|
Amyloid Beta Peptide (Aβ 1-42) Reverses the Cholinergic Control of Monocytic IL-1β Release. J Clin Med 2020; 9:jcm9092887. [PMID: 32906646 PMCID: PMC7564705 DOI: 10.3390/jcm9092887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β peptide (Aβ1-42), the cleavage product of the evolutionary highly conserved amyloid precursor protein, presumably plays a pathogenic role in Alzheimer's disease. Aβ1-42 can induce the secretion of the pro-inflammatory cytokine intereukin-1β (IL-1β) in immune cells within and out of the nervous system. Known interaction partners of Aβ1-42 are α7 nicotinic acetylcholine receptors (nAChRs). The physiological functions of Aβ1-42 are, however, not fully understood. Recently, we identified a cholinergic mechanism that controls monocytic release of IL-1β by canonical and non-canonical agonists of nAChRs containing subunits α7, α9, and/or α10. Here, we tested the hypothesis that Aβ1-42 modulates this inhibitory cholinergic mechanism. Lipopolysaccharide-primed monocytic U937 cells and human mononuclear leukocytes were stimulated with the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate triethylammonium salt (BzATP) in the presence or absence of nAChR agonists and Aβ1-42. IL-1β concentrations were measured in the supernatant. Aβ1-42 dose-dependently (IC50 = 2.54 µM) reversed the inhibitory effect of canonical and non-canonical nicotinic agonists on BzATP-mediated IL-1β-release by monocytic cells, whereas reverse Aβ42-1 was ineffective. In conclusion, we discovered a novel pro-inflammatory Aβ1-42 function that enables monocytic IL-1β release in the presence of nAChR agonists. These findings provide evidence for a novel physiological function of Aβ1-42 in the context of sterile systemic inflammation.
Collapse
|
8
|
Marksteiner J, Oberacher H, Humpel C. Acyl-Alkyl-Phosphatidlycholines are Decreased in Saliva of Patients with Alzheimer's Disease as Identified by Targeted Metabolomics. J Alzheimers Dis 2020; 68:583-589. [PMID: 30814361 DOI: 10.3233/jad-181278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diagnosis of Alzheimer's disease (AD) is still a challenge. Salivary analysis could produce an easily accessible and inexpensive possibility to study metabolic changes in AD. In the present pilot study, we show for the first time using targeted metabolomics that acyl-alkyl phosphatidylcholines (PCae C34:1-2; PCae C36:1-2-3; PCaeC38:1c3; PCae C40:2-3) are significantly reduced in saliva of AD patients (n = 25) compared to healthy controls (n = 25). Saliva levels of PCae C36Λ1-2-3) were also decreased in patients with mild cognitive impairment (n = 25). No changes were seen for saliva diacyl-phosphatidylcholines, lyso-acyl-phosphatidylcholines, and sphinogomyelins. These data suggest specific lipid changes in the saliva of AD patients, thus salivary measures could establish new biomarkers. However, these preliminary results have to be established in larger scale studies.
Collapse
Affiliation(s)
- Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| |
Collapse
|
9
|
Elevation of plasma soluble amyloid precursor protein beta in Alzheimer's disease. Arch Gerontol Geriatr 2019; 87:103995. [PMID: 31874328 DOI: 10.1016/j.archger.2019.103995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Beta-amyloid is considered to be a pathophysiological marker in Alzheimer's disease (AD). Soluble amyloid precursor proteins (sAPPs) -α (sAPPα) and -β (sAPPβ), which are the byproducts of non-amyloidogenic and amyloidogenic process of APP, respectively, have been repeatedly observed in the cerebrospinal fluids (CSF) of AD patients. The present study focused on the determination of sAPP levels in peripheral blood. METHODS The plasma protein levels of sAPPα and sAPPβ were measured with ELISA. Plasma from 52 AD patients, 98 amnestic mild cognitive impairment (MCI) patients, and 114 cognitively normal controls were compared. RESULTS The plasma level of sAPPβ was significantly increased in AD patients than in cognitively healthy controls. However, no significant change in plasma sAPPα was observed among the three groups. Furthermore, the plasma sAPPβ levels significantly correlated with cognitive assessment scales, such as clinical dementia rating (CDR), and mini-mental status examination (MMSE). Interestingly, sAPPα and sAPPβ had a positive correlation with each other in blood plasma, similar to previous studies on CSF sAPP. This correlation was stronger in the MCI and AD groups than in the cognitively healthy controls. CONCLUSIONS These results suggest that individuals with elevated plasma sAPPβ levels are at an increased risk of AD; elevation in these levels may reflect the progression of disease.
Collapse
|
10
|
Bram JMDF, Talib LL, Joaquim HPG, Sarno TA, Gattaz WF, Forlenza OV. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:963-972. [PMID: 29845446 DOI: 10.1007/s00406-018-0905-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The clinical diagnosis of Alzheimer's disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve-AUC-0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Tamires Alves Sarno
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
11
|
Akingbade OES, Gibson C, Kalaria RN, Mukaetova-Ladinska EB. Platelets: Peripheral Biomarkers of Dementia? J Alzheimers Dis 2019; 63:1235-1259. [PMID: 29843245 DOI: 10.3233/jad-180181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dementia continues to be the most burdening neurocognitive disorder, having a negative impact on the lives of millions. The search for biomarkers to improve the clinical diagnosis of dementia is ongoing, with the focus on effective use of readily accessible peripheral markers. In this review, we concentrate on platelets as biomarkers of dementia and analyze their potential as easily-accessible clinical biomarkers for various subtypes of dementia. Current platelet protein biomarkers that have been investigated for their clinical utility in the diagnosis of dementia, in particular Alzheimer's disease, include amyloid-β protein precursor (AβPP), the AβPP secretases (BACE1 and ADAM10), α-synuclein, tau protein, serotonin, cholesterol, phospholipases, clusterin, IgG, surface receptors, MAO-B, and coated platelets. Few of them, i.e., platelet tau, AβPP (particularly with regards to coated platelets) and secreted ADAM10 and BACE1 show the most promise to be taken forward into clinical setting to diagnose dementia. Aside from protein biomarkers, changes in factors such as mean platelet volume have the potential to play a very specific role in both the dementia diagnosis and prognosis. This review raises a number of research questions for consideration before application of the above biomarkers to routine clinical setting. It is without doubt that there is a need for more clarification on the effects of dementia on platelet morphology and protein content before these changes can be clinically applied as dementia biomarkers and explored further in differentiating distinct dementia subtypes.
Collapse
Affiliation(s)
- Oluwatomi E S Akingbade
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
12
|
Chen K, Gao T, Bai Z, Yuan Z. Circulating APP, NCAM and Aβ serve as biomarkers for Alzheimer's disease. Brain Res 2018; 1699:117-120. [PMID: 30118716 DOI: 10.1016/j.brainres.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the early diagnosis and intervention are important for valid treatment of AD. However, there are few biomarkers for the diagnosis and monitoring of AD. In the present study, circulating APP, NCAM, Aβ40, and Aβ42 were measured in order to identify which marker or combination of markers could be useful, cost-effective and noninvasive biomarkers for diagnosing and continuously monitoring AD. The results showed that circulating APP, NCAM, Aβ40, and Aβ42 were different between the AD group and the control group. Importantly, the combination of the four biomarkers had the highest AUC (0.997) with the highest sensitivity (98.5). Therefore, circulating APP, NCAM, Aβ40, and Aβ42 can be used as desirable biomarkers for AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Keping Chen
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Tianli Gao
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zuanning Yuan
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Alexopoulos P, Gleixner LS, Werle L, Buhl F, Thierjung N, Giourou E, Kagerbauer SM, Gourzis P, Kübler H, Grimmer T, Yakushev I, Martin J, Kurz A, Perneczky R. Plasma levels of soluble amyloid precursor protein β in symptomatic Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2018; 268:519-524. [PMID: 28602012 DOI: 10.1007/s00406-017-0815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
Abstract
The established biomarkers of Alzheimer's disease (AD) require invasive endeavours or presuppose sophisticated technical equipment. Consequently, new biomarkers are needed. Here, we report that plasma levels of soluble amyloid precursor protein β (sAPPβ), a protein of the initial phase of the amyloid cascade, were significantly lower in patients with symptomatic AD (21 with mild cognitive impairment due to AD and 44 with AD dementia) with AD-typical cerebral hypometabolic pattern compared with 27 cognitively healthy elderly individuals without preclinical AD. These findings yield further evidence for the potential of sAPPβ in plasma as an AD biomarker candidate.
Collapse
Affiliation(s)
- Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany. .,Department of Psychiatry, University Hospital of Rion, University of Patras, 26500, Patras, Greece.
| | - Lena-Sophie Gleixner
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lukas Werle
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Felix Buhl
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Thierjung
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Evangelia Giourou
- Department of Psychiatry, University Hospital of Rion, University of Patras, 26500, Patras, Greece
| | - Simone M Kagerbauer
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philippos Gourzis
- Department of Psychiatry, University Hospital of Rion, University of Patras, 26500, Patras, Greece
| | - Hubert Kübler
- Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Martin
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany.,Neuroepidemiology and Ageing Research Unit, Faculty of Medicine, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK.,West London Mental Health NHS Trust, London, UK.,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
14
|
Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer’s Disease. Mol Neurobiol 2018; 55:8815-8825. [DOI: 10.1007/s12035-018-1039-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
|
15
|
Platelet phosphorylated TDP-43: an exploratory study for a peripheral surrogate biomarker development for Alzheimer's disease. Future Sci OA 2017; 3:FSO238. [PMID: 29134122 PMCID: PMC5674277 DOI: 10.4155/fsoa-2017-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Alzheimer's disease (AD) and other forms of dementia create a noncurable disease population in world's societies. To develop a blood-based biomarker is important so that the remedial or disease-altering therapeutic intervention for AD patients would be available at the early stage. Materials & methods: TDP-43 levels were analyzed in postmortem brain tissue and platelets of AD and control subjects. Results: We observed an increased TDP-43 (<60%) in postmortem AD brain regions and similar trends were also observed in patient's platelets. Conclusion: Platelet TDP-43 could be used as a surrogate biomarker that is measurable, reproducible and sensitive for screening the patients with some early clinical signs of AD and can be used to monitor disease prognosis. In this study, we explore to identify an Alzheimer's disease (AD)-selective phospho-specific antibody that recognizes the diseased form of TDP-43 protein in patient's blood-derived platelets. Our results suggest that selective antiphosphorylated TDP-43 antibody discriminates AD from non-demented controls and patients with amyotrophic lateral sclerosis. Therefore, platelet screening with a selective antibody could potentially be a useful tool for diagnostic purposes for AD.
Collapse
|
16
|
Oberacher H, Arnhard K, Linhart C, Diwo A, Marksteiner J, Humpel C. Targeted Metabolomic Analysis of Soluble Lysates from Platelets of Patients with Mild Cognitive Impairment and Alzheimer’s Disease Compared to Healthy Controls: Is PC aeC40:4 a Promising Diagnostic Tool? J Alzheimers Dis 2017; 57:493-504. [DOI: 10.3233/jad-160172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Herbert Oberacher
- Department of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Kathrin Arnhard
- Department of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Caroline Linhart
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Angela Diwo
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, Austria
| |
Collapse
|
17
|
Kuriyama N, Mizuno T, Yasuike H, Matsuno H, Kawashita E, Tamura A, Ozaki E, Matsui D, Watanabe I, Koyama T, Miyatani F, Kondo M, Tokuda T, Ohshima Y, Muranishi M, Akazawa K, Takada A, Takeda K, Matsumoto S, Mizuno S, Yamada K, Nakagawa M, Watanabe Y. CD62-mediated activation of platelets in cerebral white matter lesions in patients with cognitive decline. Arch Gerontol Geriatr 2016; 62:118-24. [DOI: 10.1016/j.archger.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 02/08/2023]
|
18
|
Plagg B, Marksteiner J, Kniewallner KM, Humpel C. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer's disease mouse models and in human patients with Alzheimer's disease. Biogerontology 2015; 16:543-58. [PMID: 25947203 PMCID: PMC4487346 DOI: 10.1007/s10522-015-9580-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer’s disease (AD) is a severe neurodegenerative disorder characterized mainly by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss. Blood platelets contain the neurotransmitter serotonin and amyloid-precursor protein (APP), and may thus be useful as a peripheral biomarker for AD. The aim of the present study was to functionally characterize platelets by FACS, to examine alterations in APP expression and secretion, and to measure serotonin levels in hypercholesterolemia mice with AD-like pathology and in two AD mouse models, the triple transgenic AD model (3xTg) and the APP overexpressing AD model with the Swedish–Dutch–Iowa mutations (APP_SweDI). These data are supplemented with epidermal growth factor (EGF) levels and compared with changes observed in platelets of patients with AD. We observed decreased platelet APP isoforms in 3xTg mice and patients with AD when analysed by means of Western blot. In patients, a significant increase of APP levels was observed when assessed by ELISA. Secreted APPβ proved to be altered amongst all three animal models of AD at different time points and in human patients with AD. Serotonin levels were only reduced in 7 and 14 month old 3xTg mice. Moreover, we found significantly lower EGF levels in human AD patients and could thereby reproduce previous findings. Taken together, our data confirm that platelets are dysfunctional in AD, however, results from AD animal models do not coincide in all aspects, and markedly differ when compared to AD patients. We support previous data that APP, as well as EGF, could become putative biomarkers for diagnosing AD in human platelets.
Collapse
Affiliation(s)
- Barbara Plagg
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | | | | | | |
Collapse
|
19
|
Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer's disease biomarkers? Acta Neuropathol Commun 2014; 2:65. [PMID: 24934666 PMCID: PMC4229876 DOI: 10.1186/2051-5960-2-65] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022] Open
Abstract
Peripheral biomarkers play an indispensable role in quick and reliable diagnoses of any kind of disease. With the population ageing, the number of people suffering from age-related diseases is expected to rise dramatically over the coming decades. In particular, all types of cognitive deficits, such as Alzheimer's disease, will increase. Alzheimer's disease is characterised mainly by coexistence of amyloid plaques and neurofibrillary tangles in brain. Reliable identification of such molecular characteristics antemortem, however, is problematic due to restricted availability of appropriate sample material and definitive diagnosis is only possible postmortem. Currently, the best molecular biomarkers available for antemortem diagnosis originate from cerebrospinal fluid. Though, this is not convenient for routine diagnosis because of the required invasive lumbar puncture. As a consequence, there is a growing demand for additional peripheral biomarkers in a more readily accessible sample material. Blood platelets, due to shared biochemical properties with neurons, can constitute an attractive alternative as discussed here. This review summarises potential platelet Alzheimer's disease biomarkers, their role, implication, and alteration in the disease. For easy comparison of their performance, the Hedge effect size was calculated whenever data were available.
Collapse
Affiliation(s)
- Michael Veitinger
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Balazs Varga
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Sheila B Guterres
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
- />Institute of Chemistry at São Carlos, University of São Paulo, São Paulo, Brazil
| | - Maria Zellner
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| |
Collapse
|