1
|
Kansakar SB, Sterben SP, Anamala CC, Thielen MD, Liaudanskaya V. The Silent Saboteur: How Mitochondria Shape the Long-Term Fate of the Injured Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644244. [PMID: 40166284 PMCID: PMC11957143 DOI: 10.1101/2025.03.19.644244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Traumatic brain injury (TBI) is a major risk factor for neurodegenerative diseases, including Alzheimer's disease (AD), yet the mechanistic link remains unclear. Here, we integrated human patient-derived transcriptomics with a 3D in vitro brain injury model to dissect cell-specific mitochondrial dysfunction as a driver of injury-induced neurodegeneration. Comparative transcriptomic analysis at 6 and 48 hours post-injury revealed conserved mitochondrial impairments across excitatory neurons, interneurons, astrocytes, and microglia. Using a novel cell-specific mitochondria tracking system, we demonstrate prolonged neuronal mitochondrial fragmentation, bioenergetic failure, and metabolic instability, coinciding with the emergence of AD markers, including pTau, APP, and Aβ42/40 dysregulation. Glial mitochondria exhibited delayed but distinct metabolic dysfunctions, with astrocytes impaired metabolic support and microglia sustained chronic inflammation. These findings establish neuronal mitochondrial failure as an early trigger of injury-induced neurodegeneration, reinforcing mitochondrial dysfunction as a therapeutic target for preventing TBI-driven AD pathology.
Collapse
|
2
|
Sengupta P, Mukhopadhyay D. IGF1R/ARRB1 Mediated Regulation of ERK and cAMP Pathways in Response to Aβ Unfolds Novel Therapeutic Avenue in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04735-6. [PMID: 39969678 DOI: 10.1007/s12035-025-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
IGF1R/INSR signaling is crucial for understanding Alzheimer's disease (AD) and may aid in the development of potent therapeutic strategies. This study investigated the expression and activity of these receptors and their potential to form functional hybrids in response to amyloid beta (Aβ). IGF1R, INSR, and ARRB1 were found to be upregulated in AD. The propensity for functional hybrid formation was also greater in the presence of Aβ. The association of IGF1R with ARRB1 reached a maximum at 60 min of Aβ treatment, which coincided with increased pERK activity at approximately the same time, indicating the importance of this association in pERK regulation. Knocking down IGF1R, INSR, and ARRB1 independently reduced cAMP, whereas overexpressing IGF1R significantly increased cAMP. Knocking down ARRB1 in IGF1R-overexpressing cells led to a reduction in cAMP, indicating that the interaction of ARRB1 and IGF1R possibly contributes to cAMP dysregulation. Since cAMP plays a crucial role in cognition and memory, alterations in cAMP after receptor hybridization could be significant in AD. Additionally, we noted hyperactivation of MAPK, which is associated with aberrant cellular activity, transcriptional control, and stress pathways. This finding highlights the importance of IGF1R and INSR dysregulation, which plays a major role in addition to conventional RTK signaling through multiple pathways. Here, we focused on the ARRB1 and IGF1R interaction and showed that picropodophyllin (PPP), an IGF1R-specific inhibitor, blocks this interaction and alters the ERK and cAMP status under disease conditions. Cell viability studies further revealed that the PPP substantially improved cell viability in the presence of Aβ. This highlights the role of the PPP in regulating these cascades and opens the arena for further therapeutic development for AD.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debashis Mukhopadhyay
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Leal CBQS, Zimmer CGM, Sinatti VVC, Soares ES, Poppe B, de Wiart AC, Chua XY, da Silva RV, Magdesian MH, Rafii MS, Buée L, Bottos RM. Effects of the therapeutic correction of U1 snRNP complex on Alzheimer's disease. Sci Rep 2024; 14:30085. [PMID: 39627450 PMCID: PMC11615310 DOI: 10.1038/s41598-024-81687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
The U1 snRNP complex recognizes pre-mRNA splicing sites in the early stages of spliceosome assembly and suppresses premature cleavage and polyadenylation. Its dysfunction may precede Alzheimer's disease (AD) hallmarks. Here we evaluated the effects of a synthetic single-stranded cDNA (APT20TTMG) that interacts with U1 snRNP, in iPSC-derived neurons from a donor diagnosed with AD and in the SAMP8 mouse model. APT20TTMG effectively binds to U1 snRNP, specifically decreasing TAU in AD neurons, without changing mitochondrial activity or glutamate. Treatment enhanced neuronal electrical activity, promoted an enrichment of differentially expressed genes related to key processes affected by AD. In SAMP8 mice, APT20TTMG reduced insoluble pTAU in the hippocampus, amyloid-beta and GFAP in the cortex, and U1-70 K in both brain regions, without cognitive changes. This study highlights the correction of the U1 snRNP complex as a new target for AD.
Collapse
Affiliation(s)
| | - Camila G M Zimmer
- Aptah Bio Inc., MBC BioLabs, 930 Brittan Avenue, San Carlos, 94070, USA
| | | | - Ericks S Soares
- Aptah Bio Inc., MBC BioLabs, 930 Brittan Avenue, San Carlos, 94070, USA
| | | | | | | | | | | | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, 92121, USA
| | - Luc Buée
- Alzheimer and Tauopathies, CHU-Lille, INSERM, University of Lille, Lille, 59000, France
| | - Rafael M Bottos
- Aptah Bio Inc., MBC BioLabs, 930 Brittan Avenue, San Carlos, 94070, USA.
- Vesper Biotechnologies, Dover, LP, 19904, USA.
| |
Collapse
|
4
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
5
|
Liu H, Yi X, You M, Yang H, Zhang S, Huang S, Xie L. Bulk-RNA and single-nuclei RNA seq analyses reveal the role of lactate metabolism-related genes in Alzheimer's disease. Metab Brain Dis 2024; 39:1469-1480. [PMID: 39136807 DOI: 10.1007/s11011-024-01396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/19/2024] [Indexed: 10/29/2024]
Abstract
Dysfunctional lactate metabolism in the brain has been implicated in neuroinflammation, Aβ deposition, and cell disturbance, all of which play a significant role in the pathogenesis of Alzheimer's disease (AD). In this study, we aimed to investigate the lactate metabolism-related genes (LMRGs) in AD via an integrated bulk RNA and single-nuclei RNA sequencing (snRNA-seq) analysis, with a specific focus on microglia. We obtained 26 HC and 24 AD snRNA-seq samples originated from human prefrontal cortex in Gene Expression Omnibus (GEO) database and collected 873 LMRGs from three databases, namely MSigDB, The Human Protein Atlas and GeneCards. Bulk RNA was analyzed with LMRG characteristics in AD by using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), the protein-protein interaction (PPI), CytoHubba-MCC, Support Vector Machine (SVM) algorithms analyses. Then we conducted the Receiver Operating Characteristic (ROC) curve, correlation, and connection network analyses for biomarkers. Their differential expression validation was performed using AlzData database. The single-nuclei RNA analysis of microglia was applied to identify hub genes and pathways using cell-cell communication analysis and high dimensional Weighted Gene Co-Expression Network Analysis (hdWGCNA). Support Vector Machine (SVM) algorithm showed an AUC of 0.967, a sensitivity of 93.30% and a specificity of 100.00%. Our analysis identified biomarkers with LMRG characteristics, namely INSR, CDKL1, and PNISR. ROC analysis revealed that each of these biomarkers exhibited excellent diagnostic potential, as evidenced by their respective area under the curve (AUC) values: INSR (AUC: 0.679), CDKL1 (AUC: 0.788), and PNISR (AUC: 0.724). Correlation analysis showed that biomarkers exhibited a positive correlation with each other. Connection network illustrated their shared biological processes: aging, phosphorylation, metabolic process, and apoptosis. Cell-cell communication analysis revealed that GALECTIN signaling pathway was exclusively expressed in AD microglia, and only LGALS9 exhibited significant overexpression. HdWGCNA identified FTH1 as a hub gene enriched in ferroptosis and mineral absorption pathways within microglia. The roles of INSR, CDKL1, PNISR, LGALS9, and FTH1 should be taken into account to enhance our understanding of lactate metabolism in the context of AD.
Collapse
Affiliation(s)
- Hanjie Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Xiaohong Yi
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Maochun You
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
| | - Hui Yang
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610200, Sichuan, P.R. China
| | - Siyu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Sihan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Lushuang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
| |
Collapse
|
6
|
Marston KJ, de Frutos-Lucas J, Porter T, Milicic L, Vacher M, Sewell KR, Peiffer JJ, Laws SM, Brown BM. Exploration of Alzheimer's disease-related gene expression following high-intensity and moderate-intensity exercise interventions. J Sci Med Sport 2024:S1440-2440(24)00258-5. [PMID: 39122565 DOI: 10.1016/j.jsams.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES There are currently 29 genome regions that demonstrate associations with Alzheimer's disease (AD) risk. Regular physical exercise can promote systemic change in gene expression and may modify the risk of cognitive decline and AD. This study is a secondary analysis of a randomised controlled trial and examines the effect of a six-month exercise intervention versus control on AD-related gene expression. DESIGN Single-site parallel pilot randomised controlled trial. METHODS 91 cognitively unimpaired older adults were enrolled in the Intense Physical Activity and Cognition (IPAC) study. Participants were randomised into one of three groups: high-intensity exercise, moderate-intensity exercise, or inactive control for six months. Blood samples were collected prior to, and within two weeks of intervention completion, for later expression analysis of 96 genes. To explore the relationship between changes in gene expression and the intervention groups, an interaction term ("time point × intervention group") was subsequently used. RESULTS There were no significant differences in gene expression between the three intervention groups at baseline, nor after the intervention. Within groups, five genes were upregulated, seven were downregulated and the remainder remained unchanged. None of the examined genes showed significant change from pre- to post-intervention in the exercise groups compared to the control. CONCLUSIONS Exercise does not change AD-related gene expression in cognitively unimpaired older adults. Several gene expression targets have been identified for further study.
Collapse
Affiliation(s)
| | - Jaisalmer de Frutos-Lucas
- School of Social Sciences and Communications, Universidad Europea, Spain; Centre for Precision Health, Edith Cowan University, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, Australia; Curtin Medical School, Curtin University, Australia
| | - Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Australia; The Australian eHealth Research Centre, CSIRO Health and Biosecurity, Australia
| | | | | | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, Australia; Curtin Medical School, Curtin University, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Murdoch University, Australia; Centre for Precision Health, Edith Cowan University, Australia
| |
Collapse
|
7
|
Kim JH, Lee BD, Park JM, Lee YM, Moon E, Suh H, Kim K, Kim YJ, Lee HJ, Oh HY. Family-based genome-wide association analysis of novelty seeking in a Korean schizophrenic population: A pilot study. Medicine (Baltimore) 2024; 103:e38694. [PMID: 38941432 PMCID: PMC11466168 DOI: 10.1097/md.0000000000038694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Schizophrenia (SPR) is the most devastating mental illness that causes severe deterioration in social and occupational functioning, but, the etiology remains unknown. The objective of this study is to explore the genetic underpinnings of novelty seeking behavior in schizophrenic family within the Korean population. By conducting a family-based genome-wide association study, we aim to identify potential genetic markers and variations associated with novelty seeking traits in the context of SPR. We have recruited 27 probands (with SPR) with their parents and siblings whenever possible. DNA was extracted from blood sampling of 58 individuals in 27 families and analyzed in an Illumina core exome single nucleotide polymorphism (SNP) array. A family-based association test (qFAM) was used to derive SNP association values across all chromosomes. Although none of the final 800,000 SNPs reached the genome-wide significant threshold of 8.45 × 10-7, the most significant 4 SNPs were within the 10-5 to 10-7. This study identifies genetic associations between novelty seeking behavior and SPR within families. RAPGEF5 emerges as a significant gene, along with other neuropsychiatric-related genes. Noteworthy genes like DRD4 and COMT did not show associations, possibly due to the focus on schizophrenic family. While shedding light on this complex relationship, larger studies are needed for robust conclusions and deeper mechanistic insights.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Byung Dae Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Je Min Park
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
- Department of Psychiatry, Pusan National University College of Medicine, Kyungnam, South Korea
| | - Hwagyu Suh
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Kyungwon Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Yoo Jun Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hyun Ji Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Ha Young Oh
- Department of Psychiatry, Pusan National University Hospital, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
8
|
Fredi BM, De Labio RW, Rasmussen LT, Chagas EFB, Chen ES, Turecki G, Smith MDAC, Payão SLM. CDK10, CDK11, FOXO1, and FOXO3 Gene Expression in Alzheimer's Disease Encephalic Samples. Cell Mol Neurobiol 2023; 43:2953-2962. [PMID: 36988771 PMCID: PMC11410123 DOI: 10.1007/s10571-023-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neuroinflammatory and neurodegenerative disorder that affects different regions of the brain. Its pathophysiology includes the accumulation of β-amyloid protein, formation of neurofibrillary tangles, and inflammatory processes. Genetic factors are involved in the onset of AD, but they are not fully elucidated. Identification of gene expression in encephalic tissues of patients with AD may help elucidate its development. Our objectives were to characterize and compare the gene expression of CDK10, CDK11, FOXO1, and FOXO3 in encephalic tissue samples from AD patients and elderly controls, from the auditory cortex and cerebellum. RT-qPCR was used on samples from 82 individuals (45 with AD and 37 controls). We observed a statistically significant increase in CDK10 (p = 0.029*) and CDK11 (p = 0.048*) gene expression in the AD group compared to the control, which was most evident in the cerebellum. Furthermore, the Spearman test demonstrated the presence of a positive correlation of gene expression both in the auditory cortex in the AD group (r = 0.046/p = 0.004) and control group (r = 0.454/p = 0.005); and in the cerebellum in the AD group (r = 0.654 /p < 0.001). There was no statistically significant difference and correlation in the gene expression of FOXO1 and FOXO3 in the AD group and the control. In conclusion, CDK10 and CDK11 have high expression in AD patients compared to control, and they present a positive correlation of gene expression in the analyzed groups and tissues, which suggests that they play an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Suchi Chen
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Turecki
- The Douglas-Bell Canada Brain Bank, Douglas Mental Health University, Montreal, QC, Canada
| | | | | |
Collapse
|
9
|
The common genes involved in the pathogenesis of Alzheimer's disease and type 2 diabetes and their implication for drug repositioning. Neuropharmacology 2023; 223:109327. [PMID: 36368623 DOI: 10.1016/j.neuropharm.2022.109327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The prevalences of Alzheimer's disease (AD) and type 2 diabetes (T2D) continuously increase with the aging of world population. Clinical and epidemiological studies indicate that T2D is an important risk factor for AD. However, the mechanisms underlying the linkage of the two disorders are still not fully elucidated. The aim of this study is to explore the molecular mechanisms of their comorbidity and potential drug targets for AD treatment. METHODS We first compiled comprehensive lists of genes associated with AD and T2D, respectively. Then, we investigated the signatures of the shared genes and screened for interactions between the hub genes. Subsequently, we used Autodock Vina to perform molecular docking to predict new drug candidates. Lastly, structure and dynamics of docking results were examined by molecular dynamics simulation to verify drug reliability. RESULTS We obtained 917 AD-associated genes, 631 T2D-associated genes and 175 shared genes between the two disorders for subsequent analyses. Functional analysis revealed that metabolic process, lipid and atherosclerosis, AMPK signaling pathway, insulin resistance, chemokines and cytokines were enriched in the shared genes. In addition, 50 central hub genes were identified, including IL6, TNF, INS, IL1B, AKT1, VEGFA, IL10, TP53, PTGS2, TLR4, and others. Finally, we predicted new drug candidates (verdoheme and stannsoporfin) that could be potentially used for AD treatment. CONCLUSIONS Our study confirmed that there are important shared genes and pathways between AD and T2D, which may provide clues to reveal the molecular mechanism underlying the pathophysiology of the two diseases and help us to discover novel drug candidates for the treatment of AD. The results may also provide clues into identification of new targets and strategies for prevention and therapy of T2D that predisposes to AD.
Collapse
|
10
|
Zhao J, Jia Y, Zhao W, Chen H, Zhang X, Ngo FY, Luo D, Song Y, Lao L, Rong J. Botanical Drug Puerarin Ameliorates Liposaccharide-Induced Depressive Behaviors in Mice via Inhibiting RagA/mTOR/p70S6K Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7716201. [PMID: 34707778 PMCID: PMC8545548 DOI: 10.1155/2021/7716201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The depressive symptom hallmarks the progression of the neurodegenerative diseases, especially Alzheimer's disease. Bacterial infection is related to inflammation and depression. The present project thereby examined whether botanical drug puerarin could attenuate liposaccharide- (LPS-) induced depressive behaviors in mice. METHODS Adult male C57BL/6N mice were sequentially treated with LPS and puerarin and evaluated for the depressive behaviors by tail suspension test and forced swim test. The brain tissues were profiled for the molecular targets of puerarin by next-generation RNA sequencing technique. Candidate targets were further verified in LPS-treated mice, neural stem cells, and highly differentiated PC12 cell line. RESULTS Puerarin ameliorated LPS-induced depression in the mice. RNA sequencing profiles revealed that puerarin altered the expression of 16 genes while markedly downregulated Ras-related GTP-binding protein A (RagA) in LPS-treated mice. The effect of puerarin on RagA expression was confirmed by immunostaining, Western blot, and quantitative real-time PCR (qRT-PCR). Biochemical studies showed that puerarin inhibited RagA/mTOR/p70S6K pathway, attenuated the accumulation of mTORC1 in close proximity to lysosome, and reduced the production of proinflammatory cytokines. CONCLUSIONS Botanical drug puerarin attenuated inflammation and depressive behaviors in LPS-challenged mice by inhibiting RagA/mTOR/p70S6K pathways. Puerarin may be a lead compound for the new antidepressant drugs.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- Zhu Nansun's Workstation, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- Yu Jin's Workstation, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yizhen Jia
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Wei Zhao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Huixin Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Dan Luo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Youqiang Song
- School of Biomedical Science, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
11
|
Expression of IDE and PITRM1 genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Regul 2021; 54:183-195. [PMID: 32857715 DOI: 10.2478/enr-2020-0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The aim of the present investigation was to study the expression of genes encoding polyfunctional proteins insulinase (insulin degrading enzyme, IDE) and pitrilysin metallopeptidase 1 (PITRM1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of metabolism through ERN1 signaling as well as hypoxia, glucose and glutamine deprivations. METHODS The expression level of IDE and PITRM1 genes was studied in control and ERN1 knockdown U87 glioma cells under glucose and glutamine deprivations as well as hypoxia by quantitative polymerase chain reaction. RESULTS It was found that the expression level of IDE and PITRM1 genes was down-regulated in ERN1 knockdown (without ERN1 protein kinase and endoribonuclease activity) glioma cells in comparison with the control glioma cells, being more significant for PITRM1 gene. We also found up-regulation of microRNA MIR7-2 and MIRLET7A2, which have specific binding sites in 3'-untranslated region of IDE and PITRM1 mRNAs, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Only inhibition of ERN1 endoribonuclease did not change significantly the expression of IDE and PITRM1 genes in glioma cells. The expression of IDE and PITRM1 genes is preferentially regulated by ERN1 protein kinase. We also showed that hypoxia down-regulated the expression of IDE and PITRM1 genes and that knockdown of ERN1 signaling enzyme function modified the response of these gene expressions to hypoxia. Glucose deprivation increased the expression level of IDE and PITRM1 genes, but ERN1 knockdown enhanced only the effect of glucose deprivation on PITRM1 gene expression. Glutamine deprivation did not affect the expression of IDE gene in both types of glioma cells, but up-regulated PITRM1 gene and this up-regulation was stronger in ERN1 knockdown cells. CONCLUSIONS Results of this investigation demonstrate that ERN1 knockdown significantly decreases the expression of IDE and PITRM1 genes by ERN1 protein kinase mediated mechanism. The expression of both studied genes was sensitive to hypoxia as well as glucose deprivation and dependent on ERN1 signaling in gene-specific manner. It is possible that the level of these genes expression under hypoxia and glucose deprivation is a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the control of the cell metabolism.
Collapse
|
12
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Henriques AD, Machado-Silva W, Leite RE, Suemoto CK, Leite KR, Srougi M, Pereira AC, Jacob-Filho W, Nóbrega OT. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech Ageing Dev 2020; 191:111352. [DOI: 10.1016/j.mad.2020.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
14
|
Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 2019; 67:123-137. [DOI: 10.1016/j.jnutbio.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
|
15
|
Tang L, Li J, Luo H, Bao M, Xiang J, Chen Y, Wang Y. The association of 5HT2A and 5HTTLPR polymorphisms with Alzheimer’s disease susceptibility: a meta-analysis with 6945 subjects. Oncotarget 2018; 9:15077-15089. [PMID: 29599928 PMCID: PMC5871099 DOI: 10.18632/oncotarget.23611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. Relationships of 5HT2A and 5HTTLPR polymorphisms and AD risk have been widely investigated previously, whereas results derived from these studies were inconclusive and controversial. The aim of this study was to investigate the association of the 5-HT2A and 5HTTLPR polymorphisms and AD using a meta-analysis of existing literatures. Studies were collected using PubMed, Web of Science, the Cochrane Library databases, Chinese National Knowledge Infrastructure (CNKI) and Embase. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess associations. As a result, a total of 7 publications for 5-HT2A T102C and 16 publications for 5HTTLPR (L/S) comprised 3255 cases and 3690 controls fulfilled the inclusion criteria. Significant association was covered between allelic and recessive models of 5-HT2A T102C and AD (allelic model: p = 0.003, OR [95% CI] = 1.23 [1.07, 1.40]; recessive model: p = 0.03, OR [95% CI] = 1.28 [1.02, 1.59]). Subsequently, we conducted subgroup analysis for 5-HT2A T102C polymorphism based on ethnicities and APOE ε4, and identified a significantly increased risk for the allelic and dominant models of 5-HT2A T102C and AD in Asian subgroup (allelic model: p = 0.002, OR [95% CI] = 1.42 [1.14, 1.78]; dominant model: p = 0.02, OR [95% CI] = 1.60 [1.09, 2.35]) and subgroup without APOE ε4 (allelic model: p = 0.02, OR [95% CI] = 1.44 [1.05, 1.99]; dominant model: p = 0.0008, OR [95% CI] = 2.49 [1.46, 4.25]). Nevertheless, the pooled analyses suggested no significant association between allelic, dominant, and recessive models of 5HTTLPR (L/S) and AD (p > 0.05). In conclusion, our meta-analysis demonstrates that 5HT2A C10T, but not 5HTTLPR (L/S), might increase risk for AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- Department of Neurology, Xiang-Ya Hospital, Central South University, Changsha City, Hunan Province, PR China
| | - Huaiqing Luo
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Ju Xiang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Yiwei Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China
- School of Basic Medical Science, Changsha Medical University, Changsha, PR China
- Experiment Center for Function, Changsha Medical University, Changsha, PR China
| |
Collapse
|
16
|
Serpente M, Fenoglio C, Cioffi SMG, Oldoni E, Arcaro M, Arighi A, Fumagalli GG, Ghezzi L, Scarpini E, Galimberti D. Profiling of Specific Gene Expression Pathways in Peripheral Cells from Prodromal Alzheimer’s Disease Patients. J Alzheimers Dis 2018; 61:1289-1294. [DOI: 10.3233/jad-170861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria Serpente
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Maria Giulia Cioffi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuela Oldoni
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Giulio Fumagalli
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Ghezzi
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Neurodegenerative Disease Unit, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|