1
|
Belinskaia DA, Voronina PA, Krivorotov DV, Jenkins RO, Goncharov NV. Anticholinesterase and Serotoninergic Evaluation of Benzimidazole-Carboxamides as Potential Multifunctional Agents for the Treatment of Alzheimer's Disease. Pharmaceutics 2023; 15:2159. [PMID: 37631373 PMCID: PMC10459044 DOI: 10.3390/pharmaceutics15082159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The etiology and pathogenesis of Alzheimer's disease are multifactorial, so one of the treatment strategies is the development of the drugs that affect several targets associated with the pathogenesis of the disease. Within this roadmap, we investigated the interaction of several substituted 1,3-dihydro-2-oxo-1H-benzimidazol-2-ones with their potential molecular targets: cholinesterases (ChE) and three types of the Gs-protein-coupled serotonin receptors (5-HTR) 5-HT6, 5-HT4 and 5-HT7 (5-HT4R, 5-HT6R and 5-HT7R, respectively). A microplate modification of the Ellman method was used for the biochemical analysis of the inhibitory ability of the drugs towards ChE. Molecular modeling methods, such as molecular docking and molecular dynamics (MD) simulation in water and the lipid bilayer, were used to study the interaction of the compounds with ChE and 5-HTR. In vitro experiments showed that the tested compounds had moderate anticholinesterase activity. With the help of molecular modeling methods, the mechanism of interaction of the tested compounds with ChE was investigated, the binding sites were described and the structural features of the drugs that determine the strength of their anticholinesterase activity were revealed. Primary in silico evaluation showed that benzimidazole-carboxamides effectively bind to 5-HT4R and 5-HT7R. The pool of the obtained data allows us to choose N-[2-(diethylamino)ethyl]-2-oxo-3-(tert-butyl)-2,3-dihydro-1H-benzimidazole-1-carboxamide hydrochloride (compound 13) as the most promising for further experimental development.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| | - Denis V. Krivorotov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, p.o. Kuzmolovsky, St. Petersburg 188663, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| |
Collapse
|
2
|
Chelusnova YV, Voronina PA, Belinskaia DA, Goncharov NV. Benzimidazole-Carboxamides as Potential Therapeutics for Alzheimer's Disease: Primary Analysis In Silico and In Vitro. Bull Exp Biol Med 2023; 175:345-352. [PMID: 37563531 DOI: 10.1007/s10517-023-05865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 08/12/2023]
Abstract
A primary in vitro analysis of the anticholinesterase properties of substituted 1,3-dihydro-2-oxo-1H-benzimidazol-2-ones was performed along with in silico calculation of their oral toxicity. These compounds are analogs of BIMU-8, a well-known agonist of serotonin 5-HT4 receptors, and are supposed to combine the functions of cholinesterase inhibitors and serotonin receptor agonists. Biochemical analysis showed the ability of the obtained chemicals to inhibit acetyl- and butyrylcholinesterase. A compound with minimal toxicity, high inhibitory ability against butyrylcholinesterase, and low inhibitory ability against acetylcholinesterase has been identified, which is of greatest interest for further experimental development.
Collapse
Affiliation(s)
- Yu V Chelusnova
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical-Biological Agency of Russia, Leningrad Region, Kuzmopavlovsky, Russia
| | - P A Voronina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - D A Belinskaia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N V Goncharov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
3
|
Zhang P, Wang Z, Mou C, Zou J, Xie Y, Liu Z, Benjamin Naman C, Mao Y, Wei J, Huang X, Dong J, Yang M, Wang N, Jin H, Liu F, Lin D, Liu H, Zhou F, He S, Zhang B, Cui W. Design and synthesis of novel tacrine-dipicolylamine dimers that are multiple-target-directed ligands with potential to treat Alzheimer's disease. Bioorg Chem 2021; 116:105387. [PMID: 34628225 DOI: 10.1016/j.bioorg.2021.105387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that has multiple causes. Therefore, multiple-target-directed ligands (MTDLs), which act on multiple targets, have been developed as a novel strategy for AD therapy. In this study, novel drug candidates were designed and synthesized by the covalent linkings of tacrine, a previously used anti-AD acetylcholinesterase (AChE) inhibitor, and dipicolylamine, an β-amyloid (Aβ) aggregation inhibitor. Most tacrine-dipicolylamine dimers potently inhibited AChE and Aβ1-42 aggregation in vitro, and 13a exhibited nanomolar level inhibition. Molecular docking analysis suggested that 13a could interact with the catalytic active sites and the peripheral anion site of AChE, and bind to Aβ1-42 pentamers. Moreover, 13a effectively attenuated Aβ1-42 oligomers-induced cognitive dysfunction in mice by activating the cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway, decreasing tau phosphorylation, preventing synaptic toxicity, and inhibiting neuroinflammation. The safety profile of 13a in mice was demonstrated by acute toxicity experiments. All these results suggested that novel tacrine-dipicolylamine dimers, especially 13a, have multi-target neuroprotective and cognitive-enhancing potentials, and therefore might be developed as MTDLs to combat AD.
Collapse
Affiliation(s)
- Panpan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chenye Mou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiamei Zou
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhiwen Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Yuechun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiaxin Wei
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xinghan Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiahui Dong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mengxiang Yang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Dongdong Lin
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Fei Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Wan LX, Zhen YQ, He ZX, Zhang Y, Zhang L, Li X, Gao F, Zhou XL. Late-Stage Modification of Medicine: Pd-Catalyzed Direct Synthesis and Biological Evaluation of N-Aryltacrine Derivatives. ACS OMEGA 2021; 6:9960-9972. [PMID: 33869976 PMCID: PMC8047743 DOI: 10.1021/acsomega.1c01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 05/13/2023]
Abstract
A new series of N-aryltacrine derivatives were designed and synthesized as cholinesterase inhibitors by the late-stage modification of tacrine, using the palladium-catalyzed Buchwald-Hartwig cross-coupling reaction. In vitro inhibition assay against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) demonstrated that most of the synthesized compounds had potent AChE inhibitory activity with negative inhibition of BuChE. Among them, N-(4-(trifluoromethyl)phenyl)-tacrine (3g) and N-(4-methoxypyridin-2-yl)-tacrine (3o) showed the most potent activity against AChE (IC50 values of 1.77 and 1.48 μM, respectively). The anti-AChE activity of 3g and 3o was 3.5 times more than that of tacrine (IC50 value of 5.16 μM). Compound 3o also displayed anti-BuChE activity with an IC50 value of 19.00 μM. Cell-based assays against HepG2 and SH-SY5Y cell lines revealed that 3o had significantly lower hepatotoxicity compared to tacrine, with additional neuroprotective activity against H2O2-induced damage in SH-SY5Y cells. The advantages including synthetic accessibility, high potency, low toxicity, and adjunctive neuroprotective activity make compound 3o a new promising multifunctional candidate for the treatment of Alzheimer's disease.
Collapse
|