1
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
2
|
Wang Y, Wang Y, Li S, Jin H, Duan J, Lu X, Qin Y, Song J, Li X, Jin X. Insights of Chinese herbal medicine for mitochondrial dysfunction in chronic cerebral hypoperfusion induced cognitive impairment: Existed evidences and potential directions. Front Pharmacol 2023; 14:1138566. [PMID: 36843941 PMCID: PMC9950122 DOI: 10.3389/fphar.2023.1138566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is one of the main pathophysiological markers of cognitive impairment in central nervous system diseases. Mitochondria are cores of energy generation and information process. Mitochondrial dysfunction is the key upstream factors of CCH induced neurovascular pathology. Increasing studies explored the molecular mechanisms of mitochondrial dysfunction and self-repair for effective targets to improve CCH-related cognitive impairment. The clinical efficacy of Chinese herbal medicine in the treatment of CCH induced cognitive impairment is definite. Existed evidences from pharmacological studies have further proved that, Chinese herbal medicine could improve mitochondrial dysfunction and neurovascular pathology after CCH by preventing calcium overload, reducing oxidative stress damage, enhancing antioxidant capacity, inhibiting mitochondria-related apoptosis pathway, promoting mitochondrial biogenesis and preventing excessive activation of mitophagy. Besides, CCH mediated mitochondrial dysfunction is one of the fundamental causes for neurodegeneration pathology aggravation. Chinese herbal medicine also has great potential therapeutic value in combating neurodegenerative diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yefei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huihui Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyue Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglin Qin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiale Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xianglan Jin,
| |
Collapse
|
3
|
Molkov YI, Zaretskaia MV, Zaretsky DV. Towards the Integrative Theory of Alzheimer's Disease: Linking Molecular Mechanisms of Neurotoxicity, Beta-amyloid Biomarkers, and the Diagnosis. Curr Alzheimer Res 2023; 20:440-452. [PMID: 37605411 PMCID: PMC10790337 DOI: 10.2174/1567205020666230821141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION A major gap in amyloid-centric theories of Alzheimer's disease (AD) is that even though amyloid fibrils per se are not toxic in vitro, the diagnosis of AD clearly correlates with the density of beta-amyloid (Aβ) deposits. Based on our proposed amyloid degradation toxicity hypothesis, we developed a mathematical model explaining this discrepancy. It suggests that cytotoxicity depends on the cellular uptake of soluble Aβ rather than on the presence of amyloid aggregates. The dynamics of soluble beta-amyloid in the cerebrospinal fluid (CSF) and the density of Aβ deposits is described using a system of differential equations. In the model, cytotoxic damage is proportional to the cellular uptake of Aβ, while the probability of an AD diagnosis is defined by the Aβ cytotoxicity accumulated over the duration of the disease. After uptake, Aβ is concentrated intralysosomally, promoting the formation of fibrillation seeds inside cells. These seeds cannot be digested and are either accumulated intracellularly or exocytosed. Aβ starts aggregating on the extracellular seeds and, therefore, decreases in concentration in the interstitial fluid. The dependence of both Aβ toxicity and aggregation on the same process-cellular uptake of Aβ-explains the correlation between AD diagnosis and the density of amyloid aggregates in the brain. METHODS We tested the model using clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which included records of beta-amyloid concentration in the cerebrospinal fluid (CSF-Aβ42) and the density of beta-amyloid deposits measured using positron emission tomography (PET). The model predicts the probability of AD diagnosis as a function of CSF-Aβ42 and PET and fits the experimental data at the 95% confidence level. RESULTS Our study shows that existing clinical data allows for the inference of kinetic parameters describing beta-amyloid turnover and disease progression. Each combination of CSF-Aβ42 and PET values can be used to calculate the individual's cellular uptake rate, the effective disease duration, and the accumulated toxicity. We show that natural limitations on these parameters explain the characteristic distribution of the clinical dataset for these two biomarkers in the population. CONCLUSION The resulting mathematical model interprets the positive correlation between the density of Aβ deposits and the probability of an AD diagnosis without assuming any cytotoxicity of the aggregated beta-amyloid. To the best of our knowledge, this model is the first to mechanistically explain the negative correlation between the concentration of Aβ42 in the CSF and the probability of an AD diagnosis. Finally, based on the amyloid degradation toxicity hypothesis and the insights provided by mathematical modeling, we propose new pathophysiology-relevant biomarkers to diagnose and predict AD.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
4
|
Toprak V, Akalın SA, Öcal E, Çavuş Y, Deveci E. Biochemical and immunohistochemical examination of the effects of ephedrine in rat ovary tissue. Acta Cir Bras 2023; 38:e381523. [PMID: 37132757 PMCID: PMC10158848 DOI: 10.1590/acb381523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE It was aimed to investigate the biochemical and immunohistochemical effects of ephedrine (EPH) in bilateral ovariectomized rats. METHODS Twenty-four Sprague Dawley female rats were divided into three groups: control group: The abdomen was opened and closed without any treatment; ischemia-reperfusion (IR) group: 2 h of ischemia followed by 2 h of reperfusion were allowed to cause IR injury; IR+EPH group: oral EPH solution (5 mg/kg) was administered for 28 days. RESULTS Biochemical parameters were statistically significant in group comparisons. Increased interleukin-6 (IL-6) expression, degenerative preantral and antral follicle cells and inflammatory cells around blood vessels were seen in IR group. Negative IL-6 expression was observed in seminal epithelial cells, preantral and antral follicle cells in IR+EPH group. While caspase-3 activity increased in granulosa cells and stromal cells in IR group, caspase-3 expression was negative in preantral and antral follicle cells in the germinal epithelium and cortex in IR+EPH group. CONCLUSIONS The effect of apoptosis, which occurs with the signaling that starts in the cell nucleus, caused the cessation of the stimulating effect at the nuclear level after EPH administration, and a decrease in the antioxidative effect in IR damage and inflammation in the apoptotic process.
Collapse
Affiliation(s)
- Veysel Toprak
- Diyarbakir Memorial Hospital - Division of Gynecology and Obstetrics - Diyarbakir, Turkey
| | - Senem Alkan Akalın
- Private Medical Practice - Division of Gynecology and Obstetrics - Diyarbakir, Turkey
| | - Ece Öcal
- Private Medical Practice - Division of Perinatology - Diyarbakir, Turkey
| | - Yunus Çavuş
- Diyarbakir Memorial Hospital - Division of Gynecology and Obstetrics - Diyarbakir, Turkey
| | - Engin Deveci
- Dicle University - Faculty of Medicine - Department of Histology and Embryology - Diyarbakır, Turkey
| |
Collapse
|
5
|
Zaretsky DV, Zaretskaia MV, Molkov YI. Patients with Alzheimer's disease have an increased removal rate of soluble beta-amyloid-42. PLoS One 2022; 17:e0276933. [PMID: 36315527 PMCID: PMC9621436 DOI: 10.1371/journal.pone.0276933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Senile plaques, which are mostly composed of beta-amyloid peptide, are the main signature of Alzheimer's disease (AD). Two main forms of beta-amyloid in humans are 40 and 42-amino acid, long; the latter is considered more relevant to AD etiology. The concentration of soluble beta-amyloid-42 (Aβ42) in cerebrospinal fluid (CSF-Aβ42) and the density of amyloid depositions have a strong negative correlation. However, AD patients have lower CSF-Aβ42 levels compared to individuals with normal cognition (NC), even after accounting for this correlation. The goal of this study was to infer deviations of Aβ42 metabolism parameters that underlie this difference using data from the Alzheimer's Disease Neuroimaging Initiative cohort. Aβ42 is released to the interstitial fluid (ISF) by cells and is removed by several processes. First, growth of insoluble fibrils by aggregation decreases the concentration of soluble beta-amyloid in the ISF. Second, Aβ42 is physically transferred from the brain to the CSF and removed with the CSF flow. Finally, there is an intratissue removal of Aβ42 ending in proteolysis, which can occur either in the ISF or inside the cells after the peptide is endocytosed. Unlike aggregation, which preserves the peptide in the brain, transfer to the CSF and intratissue proteolysis together represent amyloid removal. Using a kinetic model of Aβ42 turnover, we found that compared to NC subjects, AD patients had dramatically increased rates of amyloid removal. A group with late-onset mild cognitive impairment (LMCI) also exhibited a higher rate of amyloid removal; however, this was less pronounced than in the AD group. Estimated parameters in the early-onset MCI group did not differ significantly from those in the NC group. We hypothesize that increased amyloid removal is mediated by Aβ42 cellular uptake; this is because CSF flow is not increased in AD patients, while most proteases are intracellular. Aβ cytotoxicity depends on both the amount of beta-amyloid internalized by cells and its intracellular conversion into toxic products. We speculate that AD and LMCI are associated with increased cellular amyloid uptake, which leads to faster disease progression. The early-onset MCI (EMCI) patients do not differ from the NC participants in terms of cellular amyloid uptake. Therefore, EMCI may be mediated by the increased production of toxic amyloid metabolites.
Collapse
Affiliation(s)
| | | | - Yaroslav I. Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | | |
Collapse
|
6
|
Zaretsky DV, Zaretskaia MV, Molkov YI. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci Lett 2021; 770:136338. [PMID: 34767924 DOI: 10.1016/j.neulet.2021.136338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people. Neuronal death in AD is initiated by oligomeric amyloid-β (Aβ) peptides. Recently, we proposed the amyloid degradation toxicity hypothesis, which explains multiple major observations associated with AD including autophagy failure and a decreased metabolism. According to the hypothesis, the key event in the cellular toxicity of amyloid is the formation of non-selective membrane channels in lysosomal membranes by amyloid fragments that are produced by the digestion of Aβ previously absorbed by endocytosis. Electrophysiological data suggest that amyloid-formed channels have different sizes, which can be explained by the fact that channel creating barrel-shaped amyloid aggregates can consist of different number of monomers. To estimate the ability of channels to leak molecules of various molecular weights, we modeled the channels as saline-filled cylinders in non-conductive membranes that pass spheres with a density of average globular proteins. As a basis, we used the conductance distribution taken from the previously published experimental dataset, in which single channels with electrical conductance of up to one nanosiemens were registered. Our calculations show that channels with such a giant conductance can allow for passing macromolecules such as large as lysosomal cathepsins implicated in the activation of apoptosis. The formation of giant channels is disproportionally promoted in an acidic environment. Also, amyloid fragments leaking from permeabilized lysosomes can reach the internal leaflet of the plasma membrane and permeabilize it. We conclude that while dissipation of the proton gradient by any (even smallest) amyloid channels readily explains lysosomal failure, the relatively rare events of lysosomal permeabilization to large macromolecules can be an additional mechanism of cellular death induced by exposure to Aβ.
Collapse
Affiliation(s)
| | | | - Yaroslav I Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| |
Collapse
|
8
|
Zaretsky DV, Zaretskaia MV. Mini-review: Amyloid degradation toxicity hypothesis of Alzheimer's disease. Neurosci Lett 2021; 756:135959. [PMID: 34000347 DOI: 10.1016/j.neulet.2021.135959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people. Neuronal death in AD is initiated by oligomeric amyloid-β (Aβ) peptides. The amyloid channel hypothesis readily explains the primary molecular damage but does not address major observations associated with AD such as autophagy failure and decreased metabolism. The amyloid degradation toxicity hypothesis provides the interpretation as a sequence of molecular events. Aβ enters a cell by endocytosis, and the endocytic vesicle is merged with a lysosome. Lysosomal peptidases degrade the peptide. Fragments form membrane channels in lysosomal membranes that have a significant negative charge due to the presence of acidic phospholipids. Amyloid channels can transfer various ions (including protons) and even relatively large compounds, which explains lysosomal permeabilization. The neutralization of lysosomal content inactivates degradation enzymes, results in an accumulation of undigested amyloid, and stalls autophagy. Inadequate quality control of mitochondria is associated with an increased production of reactive oxygen species and decreased energy production. Also, the passage of lysosomal proteases through rare extremely large channels results in cell death. Proposed hypothesis identifies biochemical pathways involved in the initiation and progression of cellular damage induced by beta-amyloid and provides new potential pharmacological targets to treat Alzheimer's disease.
Collapse
|